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DART		
DATA	DRIVEN	AIRCRAFT	TRAJECTORY	PREDICTION	RESEARCH	

	

This	document	is	part	of	a	project	that	has	received	funding	from	the	SESAR	Joint	Undertaking	under	
grant	 agreement	 No	 699299	 under	 European	 Union’s	 Horizon	 2020	 research	 and	 innovation	
programme.	

	

	

Abstract		

This	deliverable	reports	on	visual	analysis	methods	and	techniques	developed	for	Visual	Exploration	
for	Data	Validation	and	Hypothesis	Formulation	in	the	context	of	the	DART	project.	1		These	interactive	
visual	interfaces	provide	valuable	support	in	both	the	preparation	and	the	actual	trajectory	modelling	
tasks	carried	out	in	DART.	

Towards	this,	the	document	succinctly	describes	tools	for	visual	data	exploration	of	the	most	relevant	
data	types	in	DART	for	general	data	understanding,	specifically,	of	aircraft	trajectory	data	and	airspace	
information;	 visual-interactive	 data	 preparation	 and	 analysis	 workflow	 tied	 in	 with	 trajectory	
prediction	modelling;	as	well	as	means	to	 identify	the	most	common	types	of	errors	and	omissions	
specifically	in	aircraft	surveillance	data	that	help	to	ensure	data	quality	for	subsequent	model	training.	

The	developed	interfaces	support	the	unique	capabilities	of	humans	(such	as	the	flexible	application	
of	 prior	 knowledge	 and	 experiences,	 creative	 thinking,	 and	 insight)	 and	 couple	 these	 abilities	with	
machines’	 computational	 strengths,	 enabling	 the	 generation	 of	 new	 knowledge	 from	 large	 and	
complex	data.	The	document	reviews	two	published	case	studies	for	which	expert	feedback	attested	
their	overall	utility	and	potential	for	visual	analyses	in	the	ATM	domain.	

The	presented	visualization	techniques	have	been	implemented	and	integrated	into	a	broader	visual	
analytics	framework.	This	framework	is	succinctly	described	in	this	document	as	it	also	provides	the	
basis	for	more	specific	visual	analysis	workflows	in	support	of	modelling	tasks	in	work	packages	WP2	
and	WP3.	

		 	

																																																													

	

1	“The	opinions	expressed	herein	reflect	the	author’s	view	only.	Under	no	circumstances	shall	the	SESAR	Joint	
Undertaking	be	responsible	for	any	use	that	may	be	made	of	the	information	contained	herein.”	
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1 Introduction	

1.1 Purpose	and	Scope	
The	core	contribution	of	the	DART	project	is	the	application	of	a	collection	of	data	mining,	machine	
learning	 and	 agent-based	 models	 and	 algorithms	 to	 achieve	 advanced	 data-driven	 trajectory	
prediction	capabilities	for	improved	predictability	in	demand	and	capacity	balancing	(DCB).	However,	
this	 ambition	 is	 characterized	 by	 both	 complex	 data	 and	 complex	 problems,	which	 calls	 for	 visual	
analytics	approaches.	The	science	of	visual	analytics	is	continuing	to	develop	principles,	methods,	and	
tools	to	enable	synergistic	work	between	humans	and	computers	through	interactive	visual	interfaces.	
Such	 interfaces	 support	 the	unique	capabilities	of	humans	 (such	as	 the	 flexible	application	of	prior	
knowledge	and	experiences,	creative	thinking,	and	insight)	and	couple	these	abilities	with	machines’	
computational	strengths,	enabling	the	generation	of	new	knowledge	from	large	and	complex	data.	

This	deliverable	reports	on	visual	analysis	methods	and	techniques	developed	in	the	context	of	DART	
for	Visual	Exploration	for	Data	Validation	and	Hypothesis	Formulation.	This	includes	two	key	aspects,	
namely,	 the	 creation	 of	 a	 set	 of	 interactive	 visual	 interfaces	 that	 enable	 (1)	 identification	 of	most	
common	 types	 of	 errors	 and	omissions	 in	 data,	 and	 (2)	 exploration	 of	 cleaned	data	 from	multiple	
perspectives,	namely	focusing	on	locations	in	air	space,	time	moments	and	intervals,	and	trajectories	
of	single	and	multiple	inter-related	aircraft.	

The	 results	 reported	 here	 are	 part	 of	 a	 more	 comprehensive	 suite	 of	 visualization	 techniques,	
interactive	 filtering,	and	coupled	analysis	 tools	developed	and	 implemented	over	 the	course	of	 the	
DART	 project	 (Section	 3).	 Due	 to	 the	 nature	 of	 the	 subject	matter	 underpinned	 by	 a	well-defined	
structure	of	interrelated	principal	data	types	(described	in	Section	2),	most	constituent	visualizations	
are	 employed	 both	 during	 the	 exploratory	 and	 data	 curation	 phases	 of	 analysis	 (the	 focus	 of	 the	
present	document),	as	well	as	during	confirmatory	analysis	during	algorithm	design	and	evaluation,	
which	 is	 the	 focus	 of	 DART	 work	 packages	 WP2	 (deliverable	 D2.2)	 and	 WP3	 (deliverable	 D3.3).	
Ultimately,	 refined	 tools	 for	 enhanced	 exploitation	 of	 results	 by	 the	 end-users	 of	 the	 system	
(operational	staff)	will	find	their	methodologic	basis	in	the	tool	compositions	and	workflows	discussed	
in	all	three	documents:	the	present	document	D1.5	reports	on	developments	specific	to	DART	SRO6	as	
aligned	 with	 the	 goals	 of	 work	 package	 WP1	 and	 task	 1.4.	 It	 complements	 the	 descriptions	 of	
visualization	 techniques	 and	 analysis	workflows	 addressing	DART	 SRO7	 as	 reported	 in	 deliverables	
D2.2	and	D3.3.	

1.2 Intended	Readership	
This	document	is	intended	to	be	used	by	DART	members	and	SJU.	 	
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1.3 Acronyms	and	Terminology	

Term	 Definition	

ADS-B	 Automatic	Dependent	Surveillance-Broadcast	

ATC	 Air	Traffic	Control	

ATM	 Air	Traffic	Management	

CTC	 Central	Trajectory	of	Cluster	

DART	 Data	Driven	Aircraft	Trajectory	Prediction	

DCB	 Demand	and	Capacity	Balancing	

DDR	 Demand	Data	Repository	

IFS	 InForme	de	Seguimiento	(tracking	information)	

SRO	 Specific	Research	Objective	

STC	 Space-Time	Cube	

VA	 Visual	Analytics	

WP	 Work	Package	
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2 Preliminaries	

Visualization	 and	 visual	 analytics	 approaches	 in	 DART	 address	 two	 of	 the	 seven	 strategic	 research	
objectives:	

• Description	of	visualization	techniques	to	enhance	trajectory	data	management	capabilities	
[SRO6]	

• Exploration	of	advanced	visualization	processes	for	data-driven	model	algorithms	formulation,	
tuning	and	validation,	in	the	context	of	4D	trajectories	[SRO7]	

For	both	objectives	 visualizations	 are	 required	 that	 allow	 the	exploration	of	 aircraft	 trajectory	 and	
contextual	data	(mainly,	airspace	structure)	in	their	spatial,	temporal,	and	integrated	spatiotemporal	
aspects	depending	on	 the	analysis	 task	 at	hand.	 In	 addition,	means	 to	 select,	 filter,	 aggregate	 and	
summarize	these	data	must	interoperate	with	any	visualization	to	meet	task-specific	data	abstraction	
requirements.	Thus,	visual	analysis	 tools	and	workflows	are	aligned	along	a	 typology	of	movement	
data	 types	 to	 be	 able	 to	 identify	 visualization	 requirements	 and	 subsequently	 close	 visualization	
capability	gaps	in	a	principled	and	structured	way.	

2.1 Movement	Data:	Types	and	Transformations	

As	the	theoretical	foundation	for	the	efficient	combination	of	visual	analytics	methods	and	tools,	paper	
[2]	 proposes	 a	 typology	 of	 representations	 of	 movement	 data	 and	 enumerates	 possibilities	 for	
transformations	between	different	representations	[4].	

There	 are	 three	 fundamental	 types	 of	 spatiotemporal	 data	 [4]:	 spatial	 event	 data,	 trajectories	 of	
moving	 objects,	 and	 spatial	 time	 series.	 Spatial	 events	 are	 entities	 that	 emerge	 at	 certain	 spatial	
locations	and	exist	for	a	limited	time,	such	as	regulation	or	a	sector	demand-capacity	imbalance.	Some	
events,	like	demand-capacity	imbalances,	may	extend	over	large	areas	(sectors),	which	change	over	
time.	 Spatial	 event	 data	 describe	 the	 spatial	 positions	 and	 extents,	 existence	 times,	 and	 thematic	
attributes	of	spatial	events.	Trajectories	are	chronologically	ordered	sequences	of	records	describing	
the	spatial	positions	of	moving	objects	at	different	times,	specifically,	of	aircraft	as	reported	e.g.	by	
ADS-B.	Additionally,	the	records	may	include	values	of	thematic	attributes	that	change	as	the	objects	
move,	such	as	flight	level	or	airspeed.	Spatially	referenced	time	series,	or	spatial	time	series	for	short,	
are	chronologically	ordered	sequences	of	values	of	time-variant	thematic	attributes	associated	with	
fixed	spatial	locations	or	stationary	spatial	objects,	such	as	airports	or	airspace	sectors.	For	example,	
the	time	varying	values	of	demand	in	excess	of	sector	capacity	generate	spatial	time	series	data.	

Of	 the	 three	 data	 types,	 trajectories	 are	 among	 the	 most	 complex	 data	 in	 movement	 analysis.	
Trajectories	describe	positions	of	moving	objects	at	sampled	time	moments.	When	the	temporal	and	
spatial	gaps	between	these	moments	are	small	enough,	the	intermediate	positions	of	the	objects	can	
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be	plausibly	estimated	by	means	of	interpolation	and/or	map	matching.	Such	data	can	be	called	quasi-
continuous,	e.g.,	from	ADS-B	position	messages.	Trajectories	where	recorded	positions	are	separated	
by	large	time	gaps,	such	that	the	intermediate	positions	cannot	be	reliably	reconstructed,	are	called	
episodic.	A	flight	plan’s	airspace	profile	is	an	example	of	episodic	movement	data.	Quasi-continuous	
and	episodic	 trajectories	 require	different	approaches	 for	analysis	 [4].	An	extreme	case	of	episodic	
trajectories	is	data	describing	only	trip	starts	and	ends	but	not	intermediate	positions.	Such	data	are	
usually	referred	to	as	origin-destination	(OD)	data,	such	as	connection	counts	(flights)	between	pairs	
of	airports.	

While	trajectories	provide	information	on	the	movements	of	individual	objects,	aggregated	trajectory	
data	are	spatial	time	series	describing	how	many	objects	were	present	in	different	spatial	 locations	
and/or	how	many	objects	moved	from	one	 location	to	another	during	different	 time	 intervals.	The	
time	series	may	also	include	aggregate	characteristics	of	the	movement,	such	as	the	average	speed,	
altitude,	 and	 travel	 time.	 Time	 series	 describing	 the	 presence	 of	 objects	 are	 associated	with	 fixed	
locations,	and	time	series	describing	aggregated	moves,	often	called	fluxes	or	 flows,	are	associated	
with	pairs	of	fixed	locations.	In	DART,	the	primary	case	are	aircraft	fluxes	between	airspace	sectors.	

The	 different	 types	 of	 spatiotemporal	 data	 do	 not	 exist	 in	 isolation.	 There	 are	 techniques	 for	
transforming	one	data	type	to	another	[2][4].	Data	transformations	may	be	needed	to	prepare	data	
for	analysis	methods	and/or	to	align	the	spatiotemporal	phenomenon	reflected	in	the	data	at	varying	
scales.	

Figure	1	shows	a	summary	of	possible	transformations	between	the	spatiotemporal	data	types.	The	
left	part	of	the	diagram	shows	the	tight	relationships	between	spatial	events	and	trajectories.	In	fact,	
trajectories	consist	of	spatial	events:	each	record	in	a	trajectory	of	an	object	represents	a	spatial	event	
of	the	presence	of	this	object	at	a	specific	location	at	some	moment	in	time.	Trajectories	are	obtained	
by	integrating	spatial	event	data:	for	each	object,	all	its	position	records	are	linked	in	a	chronological	
sequence.	Reciprocally,	trajectories	can	be	transformed	to	spatial	events	either	by	full	disintegration	
into	the	constituent	events,	or	by	extraction	of	particular	events	of	interest.	

	

Figure	1	–	Movement	data:	representations	and	transformation	
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Spatial	 Events:	 Multiple	 spatial	 events	 that	 are	 close	 in	 space	 and	 time	 can	 be	 united	 into	more	
complex	spatial	events.	For	example,	a	spatiotemporal	concentration	of	many	aircraft	in	a	short	time	
window	within	a	sector	may	be	treated	as	a	single	event	of	traffic	congestion,	i.e.,	a	potential	hotspot.	
Such	composite	spatial	events	can	be	detected	and	extracted	by	means	of	density-based	clustering	[4].	
To	represent	a	composite	event	as	a	single	entity,	a	spatiotemporal	envelope	may	be	built	around	the	
constituent	events.	

Trajectories:	 Often,	 trajectories	 of	moving	 objects	 are	 available	 as	 unitary	 sequences	 of	 recorded	
positions	extending	throughout	the	whole	period	of	observation,	including	the	time	intervals	when	the	
objects	did	not	move.	For	certain	analysis	tasks,	it	may	be	reasonable	to	separate	movements	from	
stops	 and	 divide	 full	 trajectories	 into	 smaller	 trajectories	 that	 represent	 the	movements	 (trips	 or	
flights)	 between	 the	 stops	 (landings).	 There	 may	 also	 be	 other	 reasons	 and	 criteria	 for	 dividing	
trajectories	[4].	

Spatial	 Time	 Series	 (Place-Based):	 Spatial	 time	 series	 can	 be	 obtained	 from	 spatial	 events	 or	
trajectories	 through	 spatiotemporal	 aggregation.	 For	 discrete	 spatial	 aggregation,	 the	 underlying	
regions	in	which	the	events	or	trajectories	take	place	can	be	divided	into	compartments,	and	time	is	
divided	into	intervals.	For	each	compartment	and	time	interval,	the	spatial	events	or	moving	objects	
that	 appeared	 in	 the	 compartment	 during	 the	 associated	 time	 interval	 are	 binned	 together	 and	
counted.	Other	aggregate	statistics	can	also	be	computed.	The	result	is	a	place-based	time	series	in	
which	 temporal	 sequences	 of	 aggregate	 values	 are	 associated	 with	 the	 places	 (i.e.,	 spatial	
compartments).	From	such	spatial	time	series,	in	turn,	it	is	possible	to	extract	spatial	events	[2],	for	
example,	events	of	high	cumulative	flight	delays.	

Spatial	Time	Series	(Link-Based):	Trajectories	can	also	be	aggregated	into	link-based	time	series:	for	
each	pair	of	 compartments	and	 time	 interval,	 the	objects	 that	moved	 from	 the	 first	 to	 the	 second	
compartment	during	this	time	interval	are	counted	and	aggregate	characteristics	of	their	movements	
(e.g.,	the	average	flight	delay)	are	calculated.	

Local	Time	Series	and	Spatial	Situations:	Discrete	place-based	and	link-based	spatial	time	series	can	
be	 viewed	 in	 two	 complementary	 ways.	 On	 the	 one	 hand,	 they	 consist	 of	 temporally	 ordered	
sequences	of	values	associated	with	individual	places	or	links,	i.e.,	local	time	series.	On	the	other	hand,	
a	spatial	 time	series	 is	a	 temporally	ordered	sequence	of	 the	distribution	of	spatial	events,	moving	
objects,	or	collective	moves	(flows)	of	moving	objects	over	the	whole	territory	and	the	spatial	variation	
of	various	aggregate	characteristics.	These	distributions	are	called	“spatial	situations”	[2].		

Spatial	situations	represented	as	continuous	fields:	Continuous	spatial	aggregation	 is	done	using	a	
raster,	 i.e.,	a	regular	grid	dividing	the	territory	into	small	cells.	As	in	discrete	aggregation,	counts	or	
other	aggregates	are	obtained	for	the	cells.	Then,	spatial	smoothing	is	applied,	which	combines	the	
value	in	each	cell	with	the	values	in	the	surrounding	cells	using	a	special	weighting	function	(kernel	
function).	The	function	defines	the	manner	in	which	the	weights	of	the	surrounding	cells	decrease	as	
the	 distance	 to	 the	 central	 cell	 increases.	 The	 result	 is	 a	 smooth	 density	 field.	 Continuous	 spatial	
aggregation	can	be	combined	with	discrete	temporal	aggregation	based	on	time	division	into	intervals.	
A	density	field	is	generated	for	each	time	interval	and	represents	the	distribution	of	spatial	events	or	
movements	 during	 that	 interval.	 Hence,	 the	 result	 of	 this	 aggregation	 is	 a	 time	 series	 of	 spatial	
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situations.	Unlike	the	case	of	discrete	spatial	aggregation,	such	spatial	time	series	cannot	be	viewed	as	
a	set	of	local	time	series.	

2.2 Movement	Data:	Quality	Issues	

Understanding	of	data	quality	is	essential	for	choosing	suitable	analysis	methods	and	interpreting	their	
results.	 Investigation	 of	 quality	 of	 movement	 data,	 due	 to	 their	 spatiotemporal	 nature,	 requires	
consideration	from	multiple	perspectives	at	different	scales.	In	paper	[3],	we	review	the	key	properties	
of	movement	data	and,	on	their	basis,	create	a	typology	of	possible	data	quality	problems	and	suggest	
approaches	to	identifying	these	types	of	problems.		In	particular,	we	systematically	consider	different	
approaches	 to	 position	 recording	 and	 related	 properties	 of	 movement	 data,	 taking	 into	 account	
properties	of	 the	mover	set,	spatial	properties,	 temporal	properties	and	data	collection	properties.	
Based	on	this,	we	define	a	typology	of	movement	data	quality	problems,	considering	

• missing	position	records	and	their	distribution		
o in	space,		
o in	time,		
o in	space-time;	

• accuracy	problems,	including	
o mover	identity	errors,	
o spatial	errors,	
o temporal	errors,	
o attribute	errors;	

• precision	deficiency.	
	

Based	on	this	typology	and	the	specific	data	types	relevant	in	the	context	of	the	DART	objectives,	as	
described	in	the	following	Section	3,	several	visualization,	analysis	and	interaction	methods	have	been	
devised	to	facilitate	visual	exploration	and	data	quality	assessment2,	as	described	in	Section	4.	

																																																													

	

2	The	same	typology	also	underlines	the	tools	and	workflows	described	 in	D2.2.	and	D3.3	 in	support	of	data-
driven	model	algorithms	formulation,	tuning	and	validation.	
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3 Visual	Analytics	Framework	for	interactive	
visual	data	exploration	and	analysis	

3.1 General	Approach	
The	purpose	of	the	Visual	Analysis	(VA)	approach	is	to	combine	algorithmic	analysis	with	the	human	
analyst’s	insight	and	tacit	knowledge	in	the	face	of	incomplete	or	informal	problem	specifications	and	
noisy,	 incomplete,	 or	 conflicting	 data.	 Visual	 Analysis	 therefore	 is	 an	 iterative	 process	 where	
intermediate	results	are	visually	evaluated	to	ascertain	and	inform	subsequent	analysis	steps	based	on	
prior	knowledge	and	gathered	insights.	The	underlying	conceptual	model	is	the	Visual	Analytics	Loop	
adapted	from	[5]	(Figure	2).	Specifically,	it	is	worth	noting	that	due	to	the	exploratory	focus,	VA	does	
not	prescribe	a	rigid	pipeline	of	algorithmic	processing	steps,	nor	does	it	prescribe	a	fixed	composition	
of	 specific	visualizations,	as	opposed	 to	 typical	KPI	dashboards.	 In	 fact,	VA	workflows	developed	 in	
DART	 combine	 established	 visualization	 and	 interaction	 techniques	 with	 novel	 methods	 that	 are	
specific	to	the	tasks	and	data	related	to	the	aviation	domain.	It	is	therefore	highly	desirable	to	be	able	
to	combine	these	novel	and	preexisting	visualization	and	analysis	functionality	in	the	most	flexible	way	
possible.	

	
Figure	2	-	:	The	Visual	Analytics	Loop	followed	by	DART’s	Visual	Analytics	toolset,	adapted	from	[5].	

To	 cope	with	 these	 requirements	 in	 an	 efficient	 and	 scalable	way,	 the	 Visual	 Analytics	 framework	
follows	 a	modular,	 extensible	 design,	 as	 shown	 in	 Figure	 3.	 It	 comprises	 four	 principal	 component	
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groups	–	data	storage,	analysis	methods,	data	filtering	and	selection	tools,	and	of	course,	visualization	
techniques.	 Different	 components	 are	 typically	 composed	 in	 an	 ad-hoc	 fashion,	 through	 visual-
interactive	 controls,	 to	 facilitate	 the	 workflow	 required	 by	 the	 human	 analyst’s	 task	 at	 hand.	 In	
particular,	 this	 allows	 creating	 linked	 multiple	 views	 to	 simultaneously	 visualize	 complementary	
aspects	of	 complex	data	or	analytical	models,	e.g.,	 the	 spatial	and	cyclic	 temporal	aspects	of	 flight	
delays.	Figure	3	indicates	by	matching	color	marks	what	components	are	typically	involved	in	which	
phases	of	the	VA	loop	shown	in	Figure	2.	

	

	
Figure	3	-	The	Visual	Analytics	module	architecture	with	its	principal	components	to	support	the	VA	loop.	

	

3.1.1 Data	Storage	

The	data	storage	component	serves	three	functions.	First,	it	provides	a	flexible	interface	to	load	input	
data,	including	raw	and	pre-processed	data	as	provided	by	DART’s	data	processing	pipeline.		

Second,	this	component	provides	management	of	intermediate	analysis	results.	This	is	necessary	as	
interactive	analysis	frequently	requires	data	representations	that	are	different	from	archival	storage	
for	 efficiency	 reasons,	 e.g.	 by	 denormalizing	 data	 kept	 in	 a	 relational	 schema.	 In	 addition,	 the	
explorative	and	iterative	nature	of	analysis	often	results	in	intermediate	data	attributes	that	are	almost	
immediately	 discarded	 for	 a	 refined	 result	 (e.g.,	 cluster	 associations	 of	 entities	 after	 interactive	
parameter	changes	to	the	algorithm).	

Third,	ad-hoc	analyses	might	often	have	the	need	to	integrate	external	data,	especially	during	early	
experiments.	Typical	examples	include	data	and	models	generated	by	scripts	or	other	tools	in	standard	
formats	(CSV	files,	Shape	files,	XML	files,	or	 local	databases)	by	an	analyst.	Enabling	this	 loose,	file-
based	integration	into	the	VA	platform	has	proven	essential	in	maintaining	flexibility	and	extensibility	
in	terms	of	the	analyst’s	tool	capabilities.	
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3.1.2 Data	Selection	and	–grouping	

One	key	feature	of	Visual	Analytics	is	the	ability	to	directly	manipulate	data	and	algorithm	parameters	
through	 visual	 interaction.	 Therefore,	 interactive	 selection	 of	 data	 elements	 across	multiple	 views	
allows	the	analyst	to	define	complex,	multi-facetted	filters	on	data	before	analytical	processing.	An	
example	is	the	simultaneous	specification	of	a	specific	airspace	sectors	in	a	map	display,	a	specific	time	
range	from	a	time	graph,	and	a	subset	of	flights	to	some	cluster	visualization	(e.g.,	by	predominant	
route	choice	[1]).	For	specific	applications	of	concerted	filters	and	coordinated	views	in	DART-related	
tasks,	refer	to	deliverables	D2.2	Section	2.5	and	D3.3.	Examples	discussed	there	include	the	selection	
of	different	flight	phases	(i.e.,	sub-trajectories	corresponding	to	climb,	descent,	cruise	phases)	based	
on	trajectory	attributes	in	D2.2,	and	selection	of	flights	based	on	reduced	or	increased	accumulated	
delay	according	to	different	algorithmic	optimizations	compared	to	baseline	CFMU	flight	plans	in	D3.3.	

3.1.3 Analysis	Methods	

The	 Visual	 Analytics	 framework	 facilitates	 the	 integration	 of	 a	 wide	 range	 of	 algorithms	 by	 loose	
coupling	on	the	level	of	tabular	and	graph-structured	data	handled	by	the	data	storage	component.	
The	 DART	 project	 expanded	 an	 established	 collection;	 among	 others,	 new	 methods	 for	 partial	
trajectory	clustering	[1]	and	pairwise	comparison	of	aircraft	trajectories	(both	actual	and	predicted)	
have	been	implemented.	

3.1.4 Visualizations	

These	 framework	 components	 provide	 the	 set	 of	 interactive	 visualization	 techniques	needed	 for	 –	
primarily	exploratory	–	analysis.	DART	expanded	an	existing	set	of	standard	visualization	techniques,	
such	as	 line	plots	and	2D	map	displays,	by	task-specific	visualizations.	These	additions	focus	on	the	
visual	exploration	of	3D	aircraft	trajectories	(i.e.,	including	the	altitude	and	airspeed	components,	see	
examples	in	Figure	4),	visual	exploration	of	pairwise	and	set	comparisons	of	aircraft	trajectories	(see	
D2.2),	 as	 well	 as	 map-	 and	 time	 graph-based	 aggregate	 visualizations	 to	 support	 exploration	 and	
assessment	of	algorithm	output	(see	D3.3).	

The	following	Section	4	reviews	components	and	workflows	specifically	targeting	the	visual	exploration	
of	data	relevant	in	DART	as	aligned	with	SRO6	–	Enhanced	trajectory	data	management	capabilities:	in	
terms	of	exploratory	analysis	for	general	data	understanding	(Sections	4.1.1	–	4.1.3),	data	preparation	
(Section	4.1.4),	as	well	as	for	data	quality	assessment	(Section	4.2),	which	are	crucial	steps	prior	to	
modelling	activities.		
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Figure	4	-	Tools	for	visual	exploration	of	contextual	data	such	as	airspace	sectorization	schemes	(top	left)	and	various	types	
of		aircraft	trajectory	data	such	as	actual	tracks	and	flight	plans	(middle	row),	trajectory	clusters	(bottom	row),	in	space	and	
time	(top	right).	
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4 Data	Exploration	and	Data	Quality	Issues	

4.1 Visual-interactive	exploration	of	aviation	data	sources	
Data	exploration	is	a	critical	first	step	in	any	data	analysis	to	enable	general	data	understanding	and	to	
ensure	expected	patterns	are	present	in	the	data	(indicating	the	data	represents	an	adequate	sample	
of	reality).	Additionally,	visual	exploration	serves	to	identify,	explain,	and	possibly	rectify,	unexpected	
patterns,	especially	those	indicative	of	data	quality	issues	that	may	be	present	due	to	various	reasons.	

In	the	context	of	DART,	the	following	data	types	are	relevant	(cf.	D1.1):	

• Weather	information	

• Airspace	information	

• Aircraft	trajectories	

4.1.1 Weather	information	

Weather	information	in	DART	comes	from	carefully	curated	and	well-understood	data	sources	(NOAA,	
METAR,	SIGMET,	TAF;	cf.	D1.3)	with	a	number	of	 software	 tools	 readily	available	 for	browsing	and	
visualization;	therefore,	no	additional	tools	for	exploratory	visualizations	were	required.	

4.1.2 Airspace	Information	

Airspace	information	in	DART	comes	from	the	DDR-2	repository.	Since	this	data	represents	the	primary	
frame	of	 spatial	 reference	 for	aircraft	movements,	 there	 is	a	 clear	need	 for	enhanced	visualization	
tools	for	exploration.	In	DART,	the	focus	has	been	on	visualizations	that	can	help	domain	experts	and	
analysts	reason	about	airspace	design	(sector	configurations)	in	3D	space	and	over	time.	

To	this	end,	the	Visual	Analytics	framework’s	data	storage	component	has	been	extended	to	include	
the	 capability	 to	 read	 and	process	 the	hierarchically	 organized	DDR	data	 (cf.	D1.3,	 Section	 5.5).	 In	
addition,	corresponding	visualizations	have	been	added	that	allow	the	display	of	sectorizations	on	2D	
maps	(Figure	5),	as	3D	volumetric	representations	(Figure	6),	as	well	as	updated	temporal	displays	for	
the	visualization	and	analysis	of	temporal	dynamics/cyclicity	of	airspace	configuration	schemes	(Figure	
7).	 Interactive	 view	manipulation	 and	 filtering	 functionality	 is	 provided	 in	 all	 cases,	 as	 well	 as	 an	
interface	to	the	analytical	functions,	such	as	temporal	clustering	of	airspace	configurations.	Figure	7	
illustrates	an	example	for	the	latter	where	time	intervals	are	color-coded	according	to	membership	in	
clusters	of	co-occurring	sector	configurations	in	the	Spanish	airspace.	
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In	the	DART	project,	these	integrated	visualizations	have	proven	highly	useful	for	data	analysts	–	who	
are	not	domain	experts	–	to	gain	a	better	understanding	of	airspace	design	dynamics,	and	for	exploring	
an	 essential	 aspect	 of	 air	 traffic/flow	management	 context	 that	 is	 highly	 significant	 for	 trajectory	
prediction	modelling	in	WP2	and	WP3.	Visually	assessing	data	quality	was	not	a	task	necessary	for	the	
well-curated	DDR	data,	but	could	be	achieved	equally	well	using	the	same	set	of	combined	visualization	
and	analysis	tools	employed	for	data	understanding.	

	

Figure	5	–	2D	map	visualization	of	Madrid	airport’s	LECM	sector	across	different	configurations,	i.e.,	airblock	compositions.	

	

	

Figure	6	–	3D	visualizations	of	two	different	configurations	the	LECM	sector.	Since	sectorizations	are	3D	constructs	comprised	
of	several	airblocks,	a	2D	map	as	in	Figure	7	cannot	always	convey	all	relevant	information.	Here,	two	configurations	vary	in	
the	inclusion	of	airblocks	defining	the	lower	airspace,	which	does	not	however	change	their	2D	boundary.	
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Figure	7	–	Temporal	perspective	of	sector	configuration	schemes	for	sector	LECM.	Color	indicates	association	with	clusters	
according	to	sector	capacities.	The	expected,	re-occurring	patterns	of	high-capacity	configurations	selected	during	day	times	
and	fewer	larger	sectors	during	the	nights	is	easily	verified;	at	the	same	time,	several	unusual	configurations	stand	out	that	
warrant	further	investigation	(here:	time	intervals	colored	dark	blue).	

	

4.1.3 Aircraft	trajectory	data	

Aircraft	trajectories	are	the	primary	subject	matter	in	DART.	Several	different	data	sources	explicitly	or	
implicitly	define	trajectories	of	individual	aircraft	or	group	of	aircrafts:	actual	tracks	obtained	from	IFS	
(radar),	CFMU	flight	plans,	and	of	course,	trajectories	computed	via	the	algorithms	developed	in	WP2	
and	WP3.	

IFS	surveillance	data	capturing	actual	aircraft	tracks	is	possibly	subject	to	data	quality	problems	that	
need	 to	 be	 identified	 prior	 to	 using	 that	 data	 for	 analysis.	 The	 same	 is	 definitely	 true	 for	
complementary	 ADS-B	 surveillance	 data	 sources	 obtained	 from	 services	 such	 as	 FlightAware	 and	
FlightRadar24.	In	all	cases,	surveillance	data	should	be	checked	for	coverage	gaps	in	space	and	time.	
This	is	facilitated	through	2D	and	3D	map	displays	that	either	display	trajectory	shapes	directly,	or	that	
visualize	task-specific	transformations	derived	from	trajectories.	The	former	is	illustrated	in	Figure	8	
that	shows	gaps	in	spatial	coverage	in	a	test	data	set	containing	only	a	subset	of	surveillance	stations.	
The	latter	is	illustrated	in	Figure	9,	where	the	relative	change	of	flight	levels	has	been	calculated	as	a	
derived	positional	attribute	in	order	to	visualize		3D	flight	dynamics	in	a	2D	map	display.	

Another	class	of	error	encountered	relatively	frequently	in	initial	test	data	sets	were	cases	of	duplicate	
flight	 IDs;	mostly,	duplicate	callsigns	 in	ADS-B	data,	 likely	due	to	wrong	transponder	settings	 in	the	
aircraft.	In	fact,	these	errors	prompted	the	examination	of	means	to	automatically	detect	and	address	
such	data	quality	issues,	see	Section	4.2.		

After	the	analyst	has	explored	the	overall	data	distribution,	focused	inspection	of	detected	outliers	or	
suspicious	values	in	e.g.,		the	speed	profile	(Figure	4,	top	right)	or	altitude	profile	(Figure	4,	middle	row)	
is	facilitated	through	corresponding	visualizations	combined	with	filtering.	
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Figure	8	–	Visual	exploration	of	spatial	data	coverage:	spatial	gaps	in	aircraft	tracks	from	a	surveillance	data	set	missing	a	
number	of	stations.	

	

Figure	9	–		Visual	exploration	of	flight	dynamics	for	flights	between	Barcelona	and	Madrid:	integrated	display	of	2D	trajectory	
shapes	with	flight	level	changes.	Orange	color	encodes	increases	of	flight	levels	(climbing),	while	blue	indicates	descend.	The	
line	thickness	encodes	the	absolute	change	between	to	subsequent	aircraft	positions.	

Another	 important	 aspect	 to	 understand	prior	 to	 attempting	 trajectory	modelling	 in	DART	 is	 how,	
where	and	when	actual	aircraft	trajectories	as	flown	deviate	from	the	more	abstract	flight	plans	(i.e.,	
a	series	of	waypoints)	that	form	the	basis	for	demand	prediction.	Deviation	from	original	CFMU	flight	
plans	may	be	due	 to	various	 factors	 such	as	 change	of	active	 runway	during	 the	approach/landing	
phases,	or	a	granted	direct	en-route.	Since	such	deviations	can	have	an	impact	on	flight	durations	and	
arrival	 times	 at	 both	 enroute	 waypoints	 as	 well	 as	 at	 the	 destination	 airport,	 understanding	 the	
spatiotemporal	distribution	and	magnitude	of	these	deviations	across	groups	of	flights	is	an	important	
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aspect	in	understanding	and	capturing	the	context	of	sector	demand	prediction.	Refer	to	D2.2,	Section	
3	for	a	more	detailed	discussion	of	the	complete	workflow	developed	for	this	WP2	preparatory	task.	

	

Figure	10	–	Typical	‘see-saw’	pattern	resulting	from	erroneous	integration	of	two	aircrafts’	positional	messages	into	a	single	
trajectory	object	due	to	both	aircraft	using	the	same	callsign	simultaneously.	Note	that	this	pattern	is	less	obvious	prior	to	
filtering	out	other	trajectories,	e.g.,	in	a	display	similar	to	the	one	shown	in	Figure	8.	

	

Figure	11	–	Comparative	visualization	between	to	data	sets:	differences	between	2D	shape	of	flight	plans	(blue)	versus	actual	
aircraft	tracks	as	flown	(red)	for	a	small	subset	of	flights.	This	visualization	is	used	to	gain	a	first	intuition	of	the	type,	frequency	
and	 nature	 of	 deviations.	 See	 also	D2.2,	 Section	 3	 for	 aggregate	 visualizations	 derived	 from	 the	 raw	 data	 that	 facilitate	
quantitative	analysis	of	the	spatiotemporal	deviation	distributions.	
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4.1.4 Clustering	Trajectories	by	Relevant	Parts	for	Air	Traffic	Analysis	

Clustering	is	an	efficient	and	commonly	used	instrument	for	handling	large	amounts	of	complex	data	
and	creating	understandable	overviews	of	properties	and	patterns	that	exist	in	the	data.	Trajectories	
are	complex	spatiotemporal	constructs	requiring	specific	approaches	to	clustering.	The	most	common	
approach	is	the	combination	of	a	generic	clustering	algorithm,	such	as	density-based	clustering,	with	
specific	distance	functions	assessing	the	(dis)similarity	between	trajectories.	Distance	functions	and	
clustering	are	applied	either	to	whole	trajectories,	or	to	selected	segments	of	trajectories.	In	the	latter	
case,	the	resulting	clusters	consist	of	segments	that	may	be	disjoint	and	not	suitable	for	reconstruction	
of	valid	full-fledged	trajectories.	

There	exist	analysis	tasks	for	which	only	certain	parts	of	trajectories	are	relevant.	The	analysis	needs	
to	 be	 focused	 on	 these	 relevant	 parts	 while	 keeping	 the	 integrity	 of	 the	 available	 trajectories.	
Specifically	for	certain	analysis	tasks	in	the	aviation	domain,	it	may	be	necessary	to	focus	on	the	initial	
or	final	parts	of	the	flights,	e.g.,	to	analyze	takeoff	or	landing	schemes.	Other	tasks	call	for	a	means	to	
ignore	these	parts	and	to	only	consider	the	variety	of	the	routes	from	the	origins	to	the	destinations,	
yet	others	to	deal	with	those	parts	of	flights	within	a	certain	area	or	volume	in	the	air	space.	When	
clustering	 is	 used	 for	 such	 tasks,	 it	 needs	 to	 be	 applied	 only	 to	 the	 task-relevant	 parts	 of	 the	
trajectories.	 A	 straightforward	 approach	 is	 to	 extract	 the	 relevant	 parts	 from	 the	 trajectories	 and	
supply	them	to	the	clustering	algorithm.	However,	the	division	into	relevant	and	irrelevant	parts	may	
be	temporary	and	change	throughout	the	analysis	process.	It	may	be	necessary	to	cluster	trajectories	
based	 on	 different	 selections	 of	 relevant	 parts	 while	 the	 integrity	 of	 the	 trajectories	 needs	 to	 be	
preserved.	Hence,	clustering	of	trajectories	needs	to	be	implemented	so	that	the	current	selection	of	
task-relevant	parts	is	taken	into	account.	

In	DART	a	set	of	 techniques	and	visualization	guidelines	 for	 supporting	 the	use	of	 relevance-aware	
clustering	in	visual	exploration	and	analysis	of	movement	data	has	been	proposed	[1].	This	includes	
summarization	of	 trajectory	clusters	and	visual	 representation	of	 the	clusters	 in	 the	context	of	 the	
original	 data	 with	 visual	 distinction	 between	 relevant	 and	 non-relevant	 parts.	 At	 a	 high	 level	 of	
abstraction,	the	proposed	approach	supports	an	analytical	workflow	that	consists	of	(1)	selecting	task-
relevant	parts	of	 trajectories,	 (2)	 filter-aware	clustering	of	 the	 trajectories	by	 the	similarity	of	 their	
relevant	 parts,	 and	 (3)	 exploiting	 the	 clustering	 results	 in	 subsequent	 analysis	 with	 the	 help	 of	
interactive	visual	displays.	

For	a	detailed	treatment	of	methodologic	and	algorithmic	details,	refer	to	[1].	The	approach	has	been	
subjected	 to	 expert	 review	 for	 evaluation	 on	 three	 use	 cases,	 two	 of	 which	 relate	 to	 the	 DART	
objectives:	exploring	landing	schemes	of	a	major	hub	(London),	and	reconstructing	a	generalized	air	
traffic	network	(Spain).		

The	data	in	the	first	case	study	consist	of	5,045	trajectories	(1,316,394	points)	of	the	flights	that	landed	
at	 5	 different	 airports	 of	 London	 during	 4	 days	 from	December	 1	 to	 December	 4,	 2016,	 and	 data	
describing	the	weather	during	this	period.	The	analysis	goals	are:	(1)	extract	the	major	approach	routes	
into	the	airports	of	London,	(2)	investigate	how	the	traffic	that	flows	along	these	routes	is	separated	
in	the	3D	space,	and	(3)	reveal	the	relationships	between	the	use	of	the	routes	and	wind	parameters.	
The	approach	routes	can	be	extracted	by	means	of	the	density-based	clustering	by	route	similarity,	
which	needs	 to	be	applied	 to	 the	 final	 parts	of	 the	 trajectories.	Hence,	 it	 is	 necessary	 to	 filter	 the	
trajectory	segments	by	the	distances	to	the	destinations.	This	is	not	sufficient,	however,	because	many	
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trajectories	include	holding	loops	(Figure	12).	The	loops	are	not	part	of	the	proper	landing	approach	
and	must	be	filtered	out,	otherwise	they	will	strongly	affect	the	clustering	results:	trajectories	following	
the	same	route	but	differing	in	the	number	of	loops	will	be	dissimilar	in	terms	of	the	"route	similarity"	
function	(see	D2.2,	Section	3)	and	thus	not	be	put	in	the	same	cluster	(Figure	13).	

	

Figure	12	–	The	final	parts	of	the	trajectories	of	the	flights	that	arrived	to	London.	The	holding	loops	are	highlighted	in	red.	

	

Figure	13	–	34	clusters	representing	the	main	approaches	to	the	airports	of	London	represented	by	coloring	of	the	relevant	
parts	of	the	trajectories,	while	a	density	surface	summarizes	irrelevant	trajectory	parts	(here:	cruise	phases,	holding	patterns).	

In	the	first	case	study,	the	filter-aware	clustering	of	trajectories	(Figure	14,	middle	row)	allowed	the	
analyst	 to	 reveal	 the	main	 approach	 routes	 to	 different	 airports	 despite	 the	 variation	 among	 the	
individual	 flights	with	 regard	 to	 the	 presence	 and	 number	 of	 holding	 loops.	 It	 became	possible	 to	
analyze	how	the	use	of	the	routes	changed	over	time	and	how	the	changes	were	related	to	the	wind	
parameters	 (Figure	 14).	 The	 extraction	 of	 the	 routes	 also	 facilitated	 the	 exploration	 of	 traffic	 flow	
separation	schemes	(Figure	14,	bottom).	The	domain	expert	acknowledged	these	capabilities	as	very	
useful	and	novel	for	operational	analysis	and	modelling	for	increased	predictability.	A	more	detailed	
review	of	the	use	case	and	associated	analysis	are	found	in	[1].	
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Figure	14	–	Top:	Bars	in	a	time	histogram	show	the	counts	of	the	flight	arrivals	in	hourly	intervals.	Bar	segments	are	painted	
in	the	colors	of	the	route-based	clusters	the	flights	belong	to.	A	difference	between	day	1	and	days	2-4	is	notable.	Middle:	The	
final	parts	of	the	flight	trajectories	in	days	1	and	3	colored	according	to	the	cluster	membership.	Bottom:	The	CTCs	in	days	1	
and	3	using	the	same	color	coding..	
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The	second	case	study	treated	the	reconstruction	of	the	air	 traffic	network	of	the	Spanish	airspace	
from	 flight	 trajectories.	 This	 case	 was	 motivated	 by	 the	 fact	 that	 the	 choice	 of	 airspace	 sector	
configurations	by	flow	managers	are	based	on	the	expected	traffic	intensities	on	different	routes.	The	
current	practices	of	 selecting	 configurations	by	 flow	managers	 are	not	 transparent	 as	 they	 involve	
human	decision	makers	with	their	tacit	knowledge	and	preferences.	

In	order	to	build	a	model	 in	DART	that	could	explain	the	current	configuration	choices,	and	enable	
what-if	 testing	 in	 order	 to	 find	 better	 strategies	 for	 airspace	 design,	 it	 is	 necessary	 to	match	 the	
configuration	 that	 was	 applied	 in	 a	 region	 in	 each	 time	 interval	 with	 a	 combination	 of	 aggregate	
features	 that	 properly	 characterizes	 the	 expected	 traffic	 in	 the	 region	 in	 this	 interval.	 This	 set	 of	
features	must	reflect	the	expected	traffic	flows	on	different	routes	and	in	different	directions;	hence,	
the	major	routes	existing	in	the	region	should	be	used	as	the	basis	for	the	aggregation.	The	demand	
can	then	be	expressed	as	the	number	and	temporal	density	(frequency)	of	the	expected	flights	on	each	
route.	 Thus	a	preparatory	analysis	 step	 is	 the	extraction	of	major	 routes	 from	a	 set	of	 trajectories	
representing	flight	plans	by	means	of	clustering	applied	to	relevant	parts	of	the	trajectories.	

In	this	case	study,	selection	and	clustering	of	relevant	parts	of	flight	trajectories	allowed	the	analyst	to	
extract	 the	major	 flight	 routes	 in	 the	upper	and	 lower	airspaces	of	Spain	 (Figure	15).	These	 routes	
provide	a	suitable	basis	for	the	calculation	of	the	demands	for	the	air	navigation	services.	Refer	to	[1]	
for	further	details.	

	

Figure	15	–	Top:	The	major	routes	in	the	Spanish	airspace	are	represented	by	the	central	trajectories	of	flight	clusters	(left:	
upper	airspace	>	FL	245,	right:	lower	airspace).	The	colors	differentiate	the	clusters	and	the	line	widths	are	proportional	to	the	
cluster	sizes.	Bottom:	Planned	flights	have	been	aggregated	by	a	generalized	air	traffic	network	based	on	the	extracted	major	
routes.	The	widths	of	the	lines	are	proportional	to	the	magnitudes	of	the	traffic	flows	along	the	links	of	the	network.	
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4.2 Developing	Tools	 for	Automated	Data	Quality	Assessment	and	
Correction	

The	 visual	 analysis	 methods	 presented	 in	 the	 preceding	 two	 sections,	 in	 conjunction	 with	 the	
systematic	approach	presented	in	[3]	to	detect	movement	data	quality	issues	–	such	as	missing	position	
records	 (gaps),	 various	 accuracy	 problems,	 and	 precision	 deficiencies	 –	 lays	 the	 foundation	 for	 a	
structured	approach	to	actually	address	those	detected	issues.	However,	this	cleaning	and	repairing	
data	are	still	largely	manual	tasks	that	rely	on	a	combination	of	tools	and	technologies	such	as	database	
SQL,	scripts,	and	functionality	available	in	the	analysis	toolkit.	Especially	when	handling	large	data	sets	
(many	aircraft,	large	areas,	and	long	periods)	these	tasks	can	become	tedious	and	time-consuming.	

One	possible	approach	to	mitigate	this	bottleneck	that	has	been	explored3	is	a	modular	workflow	that	
combines	automatic	data	processing	with	 interactive	visual	 reporting	to	automatically	evaluate	the	
quality	of	large	movement	data	sets.	The	core	idea	is	to	complement	the	visualizations	discussed	in	
Sections	3.1.4	and	4.1	of	this	deliverable	by	computing	modules	to	detect	and	classify	different	quality	
issues	as	discussed	in	Section	2.2.	([3]).	Using	suitable,	domain-specific	parameter	pre-sets	previously	
found	manually	 using	 these	 visualizations,	 the	 burden	 of	 initial	 identification	 of	 potential	 problem	
cases	can	subsequently	be	offloaded	from	the	analyst.	

The	proposed	workflow	comprises	three	phases	as	shown	in	Figure	16.	These	are	data	ingestion,	e.g.,	
ADS-B	or	IFS	position	messages,	 integration	of	these	position	events	into	aircraft	trajectory	objects,	
and	the	algorithmic	error	detection	and	visual	report	generation.	Results	of	each	phase	are	persisted	
for	 future	 reference.	 Ingestion	 and	 trajectory	 integration	 are	 performed	 only	 once	 per	 data	 set,	
whereas	detection	and	visualization	may	be	executed	several	times	in	reaction	to	user	interaction	such	
as	parameter	adjustment	and	selection	of	trajectory	subsets	in	space,	time,	and	aircraft	properties.	

	

	

	

	

	

	

	

Figure	16	–	Principal	workflow	for	semi-automatic	movement	data	quality	evaluation.	Top:	standard	workflow	using	a	single	
RDBMS,	bottom:	parallelized	version	using	Big	data	technologies	in	a	cluster	(distributed	file	system	HDFS,	Spark	processing).	

																																																													

	

3	This	has	been	a	joint	effort	between	DART	and	EU-H2020	datAcron	(www.	http://datacron-project.eu/)	
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Raw	data	–	position	messages	e.g.,	 from	ADS-B	or	 IFS	–	are	processed	 in	batches.	Batch	processing	
includes	detecting	event-level	errors	such	as	duplicate	position	messages	or	latitude	values	exceeding	
±90°,	and	integration	of	raw	position	data	into	aircraft	trajectories	together	with	key	statistics	about	
trajectory	properties.	

Once	trajectories	have	been	constructed	from	the	raw	events,	more	complex	data	quality	issues	and	
error	modes	can	be	detected	[3].		

For	testing	purposes,	simplified	implementations	have	been	created	for	the	detection	of	“jumps”,	i.e.,	
sharp	 discontinuities	 in	 an	 object’s	movement	 indicative	 of	 faulty	 position	 records,	 as	well	 as	 the	
detection	of	duplicate	IDs.	While	jumps	were	tested	on	synthetic	data	(Figure	17),	duplicate	flight	IDs	
were	encountered	in	the	available	flight	trajectory	data	as	exemplified	in	Figure	10.	

Finding	 correct	 parameter	 settings	 for	 error	 detection	 and	 correction	 is	 dependent	 on	 the	 type	of	
moving	 objects,	 properties	 of	 the	 data	 source	 (e.g.,	 ADS-B	 vs.	 IFS)	 and	 therefore	 usually	 requires	
human	input,	informed	by	the	statistics	collected	during	trajectory	integration.	The	utility	of	(semi-)	
automated	processing	modules	 is	 therefore	mainly	 to	 generate	 initial	 views	 indicative	 of	 potential	
quality	 problems.	 For	 the	 next	 step,	 interactive	 visual	 reports	 enable	 a	 human	 analyst	 to	 judge	
corresponding	data	properties	(Figure	18),	as	well	as	to	visually	inspect	results	of	error	detection	and,	
possibly,	 attempt	 algorithmic	 error	 correction	 (Figure	 16).	 User	 interactions	with	 the	 reports,	 e.g.,	
detection	parameter	changes,	may	also	require	re-running	of	specific	detection	jobs.	

	

Figure	17	–	Visual	inspection	of	the	“jump”	detection	using	a	given	set	of	parameters	for	a	synthetic	test	data	set.	The	left	
pane	shows	a	selected	trajectory	with	those	segments	flagged	as	“jump”	highlighted	in	red;	the	right	pane	shows	a	preview	
of	the	trajectory	if	the	offending	segments	were	removed.	

	

Massive	trajectory	data	(e.g.,	a	data	set	comprising	all	flight	operations	in	Europe	for	longer	periods)	
may	instead	require	a	scalable	realization	that	allows	the	algorithmic	execution	phases	of	the	above	
detect	 –	 visualize	 –	 correct	 cycle	 to	 complete	 within	 acceptable	 time	 frames	 (i.e.,	 minutes).	 The	
established	 Big	 Data	 processing	 paradigm	 is	 to	 build	 horizontally	 scaling	 architectures,	 that	 is,	
algorithms	executed	on	data	partitions	and	in	parallel	on	multiple	compute	nodes	in	a	cluster.	Such	
setups	achieve	speed-ups	by	adding	additional	compute	nodes	to	the	cluster	rather	than	increasing	
the	computational	capabilities	of	a	single	machine	(the	 latter	 is	also	referred	to	as	vertical	scaling).	
Figure	16,	bottom	shows	how	the	same	principal	pipeline	can	be	partially	parallelized	to	achieve	the	
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required	capabilities.		In	particular,	the	trajectory	integration	independently	operates	on	raw	position	
events	for	each	individual	aircraft	trajectory	to	speed	up	the	initial	pre-processing;	likewise,	detection	
of	 jumps,	 gaps,	 and	 duplicate	 ID	 are	 performed	 independently	 for	 each	 trajectory,	 as	 there	 is	 no	
interaction	with	other	trajectories4.	Speeding	up	this	last	phase	is	especially	beneficial	as	it	may	re-run	
several	times	to	account	for	user-defined	parameter	adjustments.	

A	 minimal	 proof-of-concept	 deployment	 of	 a	 parallel	 version	 of	 the	 framework	 underwent	 initial	
testing	using	two	physical	nodes	in	a	Spark	cluster	(Figure	19).	User	interactions	with	the	reports,	e.g.,	
detection	parameter	changes,	trigger	the	re-running	of	affected	processing	jobs	through	the	Spark	job	
server.	

	

																																																													

	

4	Note	this	also	holds	for	the	duplicate	flight	ID	case	–	even	though	positions	of	two	distinct	aircraft	are	falsely	
integrated,	the	erroneous	aggregate	element	is	a	single	trajectory	object.	
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Figure	18	–	Exemplary	report	on	a	trajectory	data	set.	Besides	overall	statistics	(top	part),	the	analyst	can	also	look	at	the	
distributions	of	specific	movement	attributes	(bottom	part),	which	inform	about	potential	errors	in	the	raw	data,	and	suitable	
parameter	settings	to	detect	them	[3].	
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Figure	19	–	Minimal	 two-node	deployment	of	a	parallelized	data	quality	evaluation	workflow.	The	master	node	holds	 the	
Spark	master	responsible	for	distribution	and	scheduling	as	well	as	the	web	server	for	the	interactive	report	front-end.	Adding	
nodes	to	the	Spark	cluster	achieves	horizontal	scaling	for	larger	data.	
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5 Conclusions	

The	 research	 ambition	 of	 the	 DART	 project	 is	 characterized	 by	 both	 complex	 data	 and	 complex	
problems,	 which	 called	 for	 visual	 analytics	 approaches.	 The	 visualization	 methods	 and	 workflows	
developed	in	the	context	of	DART	primarily	target	visual	exploration	for	data	validation	and	hypothesis	
formulation.	The	results	encompass	several	key	aspects,	namely,	a	set	of	interactive	visual	interfaces	
that	enable	

(1) visual	 data	 exploration	 of	 the	 most	 relevant	 data	 types	 in	 DART	 for	 general	 data	
understanding,	specifically,	of	aircraft	trajectory	data	and	airspace	information	[SRO6]	

(2) identification	 of	 most	 common	 types	 of	 errors	 and	 omissions	 specifically	 in	 aircraft	
surveillance	data	[SRO6],	and	

(3) exploration	of	cleaned	data	from	multiple	perspectives,	namely	focusing	on	locations	in	
air	space,	time	moments	and	intervals,	and	trajectories	of	single	and	multiple	inter-related	
aircraft	[SRO7].	

The	developed	interfaces	support	the	unique	capabilities	of	humans	(such	as	the	flexible	application	
of	 prior	 knowledge	 and	 experiences,	 creative	 thinking,	 and	 insight)	 and	 couple	 these	 abilities	with	
machines’	 computational	 strengths,	 enabling	 the	 generation	 of	 new	 knowledge	 from	 large	 and	
complex	data.	

The	visualizations	and	workflows	presented	in	this	document	primarily	address	the	first	two	issues	by	
describing	visualization	techniques	to	enhance	trajectory	data	management	capabilities,	aligned	with	
DART’s	SRO6.	Although	difficult	to	quantify	exactly,	these	capabilities	to	quickly	assess	findings	and	
refine	intermediate	results	thus	proved	to	be	very	valuable	in	supporting	both	the	preparation	and	the	
actual	trajectory	modelling	tasks	carried	out	in	DART.	

Several	proposed	workflows	have	been	reviewed	in	case	studies	(see	Section	4.1.4)	using	the	expert	
review	method,	involving	an	expert	in	the	air	traffic	management	(ATM)	domain	[1].	The	case	studies	
have	convinced	the	domain	expert	that	the	proposed	techniques	are	effective	for	the	chosen	classes	
of	tasks.	In	the	expert's	opinion,	the	performed	analyses	are	highly	innovative	in	the	ATM	domain	and	
deserve	 being	 developed	 into	 full-fledged	 general	 procedures	 for	 solving	 the	 classes	 of	 problems	
represented	by	the	case	studies	[1].	The	expert	also	expressed	his	belief	that	the	techniques	have	a	
great	potential	for	application	to	other	classes	of	problems	in	the	air	traffic	domain.	

Implementations	of	 the	presented	approaches	have	been	 integrated	 into	a	broader	visual	analytics	
framework	comprising	visualization	techniques,	 interactive	filtering,	and	coupled	analysis	tools.	The	
framework’s	 design	 follows	a	well-defined	 structure	of	 interrelated	principal	 data	 types	and	 trans-
formations	 between	 these	 types.	 As	 such,	 the	 visualizations	 for	 data	 exploration	 and	 assessment	
described	here	comprise	basic	building	blocks	that	further	complemented	by	advanced	visualization	
processes	for	data-driven	model	algorithms	formulation,	tuning	and	validation,	developed	in	support	
of	work	packages	WP2	and	WP3,	aligned	with	DART’s	SRO7.	
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