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DART		
DATA	DRIVEN	AIRCRAFT	TRAJECTORY	PREDICTION	RESEARCH	

	

This	document	is	part	of	a	project	that	has	received	funding	from	the	SESAR	Joint	Undertaking	under	
Grant	 Agreement	 No	 699299	 under	 European	 Union’s	 Horizon	 2020	 research	 and	 innovation	
programme.	

	

	

Abstract		

This	deliverable	presents	evaluation	results	from	the	collaborative	reinforcement	learning	algorithms	
designed	and	implemented	towards	resolving	DCB	problems	at	the	pre-tactical	stage	of	operations.	

Towards	 that,	 the	document	–	 to	be	 self-contained-	presents	 succinctly	 the	operational	 context	of	
DART,	 the	 specific	 problem	 considered	 towards	 assessing	 the	 impact	 of	 traffic	 on	multiple	 flights’	
trajectories	with	 respect	 to	 the	Demand-Capacity	Balance	 (DCB)	 problem,	 as	well	 as	 the	proposed	
multi-agent	Collaborative	Reinforcement	Learning	algorithms	proposed.	Then,	it	presents	the	specific	
methodology	 for	 constructing	 evaluation	 cases	 and	 the	 cases	 themselves,	 by	 exploiting	 the	 data	
provided	in	DART	consortium.	Then,	it	proceeds	to	present	and	discuss	thoroughly	the	experimental	
results	 for	each	of	 the	methods	also	 in	 comparison	 to	 the	CFMU	data,	discussing	 the	benefits	 and	
limitations	of	individual	methods.	

Finally,	the	document	presents	visualizations	of	a	specific	solution	 in	space	and	time	for	one	of	the	
evaluation	 cases	 considered	 (the	one	 requiring	 the	higher	 average	delay	 for	 the	 regulated	 flights),	
providing	further	evidence	for	the	quality	of	solutions,	which	is	representative	of	the	other	cases.	
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Executive	Summary	

This	deliverable	reports	on	evaluation	results	of	collaborative	Reinforcement	Learning	(RL)	algorithms	
for	assessing	delays	on	 regulated	 flights	 to	 resolve	Demand-Capacity	 imbalances.	These	algorithms	
implement	agent-based	modelling	approaches	towards	accounting	for	complex	phenomena	in	ATM	
due	to	network	effects.	The	developed	methods	allow	agents	–	representing	individual	flights-	to	learn	
offline	and	 in	batch-mode,	and	 in	a	 totally	distributed	way,	own	policies	 (i.e.	 regulations)	 to	 jointly	
resolve	Demand-Capacity	 imbalances.	 Jointly	here	means	that	agents’	policies	happen	concurrently	
and	in	ways	that	the	policy	of	one	affects	the	other	agents’	policies,	given	also	the	overall	dynamic	
contextual	information	regarding	operational	constraints.		

The	objective	is	to	understand	if	agent-based	modelling	approaches	are	capable	of	assessing	delays	to	
flights	 to	effectively	 resolve	DCB	problems	at	 the	pre-tactical	stage,	considering	all	 trajectories	and	
exogenous	factors.		

Therefore,	 results	 aim	 to	 provide	 evidence	 on	 the	 feasibility	 of	 the	 proposed	methods,	 based	 on	
quantitative	measurements,	as	well	as	on	qualitative	aspects	 regarding	 the	quality	of	 the	solutions	
produced.	For	this	purpose,	several	real-world	cases	have	been	identified	as	representative	of	a	variety	
of	operational	cases	to	evaluate	the	proposed	methods.			

Exploiting	DART	datasets,	 the	 specific	evaluation	procedure	 focuses	on	 real-world	evaluation	cases	
comprising	intended	trajectories	(flight	plans).	In	every	case,	the	evaluation	process	involves	replaying	
these	cases	 individually,	benchmarking	 the	results	of	algorithms	with	 respect	 to	known	regulations	
from	CFMU	data	provided	in	DART.	1	

	

		

																																																													

	

1	The	opinions	expressed	herein	reflect	the	author’s	view	only.	Under	no	circumstances	shall	the	SESAR	
Joint	Undertaking	be	responsible	for	any	use	that	may	be	made	of	the	information	contained	herein.	
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1 Introduction	

1.1 Purpose	and	Scope	
The	 goal	 is	 to	 deliver	 an	 understanding	 on	 the	 suitability	 and	 efficacy	 of	 agent-based	models	 for	
resolving	the	DCB	problem	in	Air	Traffic	Management	at	the	pre-tactical	stage	and	contribute	to	the	
envisioned	collaborative	decision-making	method	among	ATM	actors	towards	reaching	agreements	
on	trajectories	to	be	flown.			

Towards	 this	purpose,	 this	deliverable	 to	be	self-contained	presents	vert	succinctly	 the	operational	
context	of	DART,	the	specific	problem	considered	towards	assessing	the	impact	of	traffic	on	multiple	
flights’	 trajectories	 with	 respect	 to	 the	 Demand-Capacity	 Balance	 (DCB)	 problem,	 as	 well	 as	 the	
proposed	multi-agent	Collaborative	Reinforcement	Learning	algorithms	proposed.	

Then,	the	document	presents	the	specific	methodology	for	constructing	evaluation	cases	and	the	cases	
themselves	 by	 exploiting	 the	data	provided	 in	DART	 consortium.	 Then,	 it	 proceeds	 to	 present	 and	
discuss	the	experimental	results	for	each	of	the	methods	also	in	comparison	to	the	CFMU	data.	

Finally,	the	document	presents	visualizations	of	a	specific	solution	 in	space	and	time	for	one	of	the	
evaluation	 cases	 considered	 (the	one	 requiring	 the	higher	 average	delay	 for	 the	 regulated	 flights),	
providing	further	evidence	for	the	quality	of	solutions,	which	is	representative	of	the	other	cases.	
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1.2 Intended	readership	
This	document	is	intended	to	be	used	by	DART	members	and	SJU.	

1.3 Acronyms	and	Terminology	
Term	 Definition	

ANSP	 Air	Navigation	Service	Provider	

ATM	 Air	Traffic	Management	

ATC	 Air	Traffic	Control	

ATS	 Air	Traffic	Services	

AO	 Aircraft	Operators	

AU	 Airspace	User		

CFMU	 Central	Flow	Management	Unit	

DCB	 Demand	and	Capacity	Balancing	

FIR	 Flight	Information	Region	

HEC	 Hourly	Entry	Count	

HFIR	 Estimated	Entry	Date	and	Time	to	FIR	

Horizon	2020	 EU	 Research	 and	 Innovation	 programme	 implementing	 the	 Innovation	
Union,	a	Europe	2020	flagship	initiative	aimed	at	securing	Europe's	global	
competitiveness.	

HRL	 Hierarchical	Reinforcement	Learning	

IOBT	 Initial	Off-Block	Time	

NM	 Network	Manager	

MDP	 Markov	Decision	Process	

RBT	 Reference	Business	Trajectory	

RL	 Reinforcement	Learning	

SESAR	 Single	European	Sky	ATM	Research	Programme	

SJU	 SESAR	Joint	Undertaking	(Agency	of	the	European	Commission)	

WP	 Work	Package	

Table	1:	Acronyms	and	Terminology	
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1.4 Relation	to	other	Work	Packages	and	Deliverables	

This	 deliverable	 is	 related	 to	 WP1,	 since	 it	 exploits	 information	 of	 flight	 plans	 and	 airspace	
sectorizations	(configurations)	to	re-construct	real-world	evaluation	cases,	which	are	instances	of	DCB	
problems.	 It	 also	 exploits	 CFMU	 data	 -	 providing	 regulations	 imposed	 to	 flights	 to	 resolve	 DCB	
problems-	in	order	to	identify	flights	to	be	regulated	and	compare	the	quality	of	solutions	achieved	by	
the	proposed	methods	to	those	produced	by	the	NM.	These	data	sources	are	being	reported	in	D1.3	
“DART	Data	Pool”.	 In	 addition	 to	 these	 sources	of	data,	methods	exploit	 cost	 indicators	 related	 to	
strategic	delay	costs	 for	European	airlines,	according	also	 to	 the	aircraft	model	used	as	part	of	 the	
multi-agent	methods	applied.		

In	 addition	 to	 that,	 WP3	 methods	 reported	 are	 applicable	 to	 the	 trajectories	 predicted	 by	 WP2	
methods,	although	developments	in	both	work	packages	are	quite	independent,	as	planned.	

Finally,	 this	 deliverable	 is	 closely	 connected	 to	 work	 carried	 out	 in	 task	 3.1	 “Scenarios	 setup	 and	
specification	of	requirements”	and	the	operational	context	of	research	described	in	deliverable	D3.1	
“Collaborative	Trajectory	Prediction	Scenarios	and	Requirements	Specification”:	A	succinct	reference	
to	the	operational	context	is	provided	below.	

1.5 Research	Approach		
Task	 3.2	 “Collaborative	 reinforcement	 learning	 for	 trajectory	 predictions”	 aims	 to	 formulate	 the	
problem	 of	 assessing	 the	 impact	 of	 traffic	 to	 individual	 trajectories	 as	 a	Markov	 Decision	 Process	
(MDP).	 Based	 on	 this	 formulation	 collaborative	 RL	 algorithms	 for	 trajectory	 prediction	 have	 been	
designed	and	implemented,	allowing	agents	to	learn	offline	and	in	batch-mode	policies	to	resolve	DCB	
problem	 cases	 jointly,	 taking	 into	 account	 other	 agents’	 trajectories,	 contextual	 information,	 cost	
indicators	and	own	preferences.		The	MDP	formulation	of	the	problem	and	the	algorithms	proposed	
are	described	in	D3.2	“Collaborative	Trajectory	Prediction	Algorithm”.	

Therefore,	 following	 our	 research	 methodology,	 this	 deliverable,	 to	 be	 self-contained,	 succinctly	
reports	on	 the	specification	of	 the	particular	problem	considered	 in	WP3	scenario,	 the	multi-agent	
MDP	framework	that	formulates	the	problem	considered,	as	well	as	on	collaborative	reinforcement	
learning	 algorithms	 implemented	 and	 tested	 in	 real-world	datasets	 towards	 resolving	 the	problem	
cases	considered	in	D3.1.		

Finally,	 Task	 3.4	 “Model	 Test,	 Validation	&	 Visualization”	 aims	 to	 test	 and	 validate	 the	 algorithms	
developed	 using	 actual	 and	 synthetic	 data	 gathered	 and/or	 generated	 in	 WP1,	 according	 to	 the	
scenarios	 and	 the	 requirements	 specified	 in	 Task	 3.1.	 The	 evaluation	 cases	 constructed,	 the	
construction	methodology,	and	the	results	of	the	proposed	methods	are	reported	in	this	deliverable.	
Multiple	criteria	for	algorithms	evaluation/	validation	are	considered:	resulting	number	of	hotspots,	
the	 average	 delay	 for	 the	 regulated	 and	 for	 all	 flights,	 distribution	 of	 delays	 to	 flights	 and	
distribution/evolution	 of	 demand	 in	 sectors	 and	 time	 periods	 after	 flights	 being	 regulated.	
Visualizations	 of	 solutions’	 overview	 in	 space	 and	 time	 provide	 further	 insights	 into	 the	 quality	 of	
solutions	computed	by	the	proposed	methods.	

1.6 Expected	Results	
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Our	goal	 in	DART	 is	 to	develop	collaborative	RL	algorithms	 that	will	 be	 trained	 in	batch	mode	 (i.e.	
offline)	and	will	be	applied	to	assessing	the	effect	of	multiple	flights	co-occurring	in	specific	contexts	
to	the	Demand-Capacity	Balance	(DCB)	phenomena,	taking	into	account	data	from	multiple	sources,	
including	single	trajectory	predictions	and/or	flight	plans,	while	learning	efficiently	in	few	exploration	
episodes.	

The	objective	is	to	understand	if	an	agent-based	model	is	capable	of	resolving	effectively	DCB	problems	
at	the	pre-tactical	stage,	considering	all	trajectories	and	exogenous	factors.		

Results	are	quantifiable	assessments	(metrics)	concerning	the	quality	of	solutions	produced,	as	well	as	
qualitative	 aspects	 regarding	 the	 feasibility	 of	 the	 methods.	 For	 this	 purpose,	 several	 datasets	 –	
representing	real-world	cases	–	have	been	identified	as	representative	of	a	variety	of	operational	cases	
to	evaluate	the	proposed	methods.			

Exploiting	the	datasets	provided	in	DART,	the	specific	evaluation	procedure	applied	focuses	on	real-
world	cases	comprising	flight	plans,	given	the	availability	of	this	data	in	DART	as	well	as	the	availability	
of	data	to	assess	the	quality	of	solutions.	In	every	case,	the	evaluation	process	involves	replaying	these	
cases	individually,	benchmarking	the	results	with	respect	to	known	regulations	(this	can	be	done	as	
the	datasets	contain	every	snapshot	of	flight	plan	status,	from	planning	phase	to	flight	cancellation	
after	landing,	while	CFMU	data	provided	in	DART	contain	regulated	flights).	

It	must	be	noted	that	while	DART	methods	operate	at	the	pre-tactical	stage	to	assess	the	delay	that	
should	be	imposed	to	flights	towards	resolving	all	hotspots,	CFMU	regulations,	to	which	DART	solutions	
are	compared,	concern	the	delays	imposed	to	flights	to	resolve	some	of	the	hotspots:	However,	this	
does	not	hinder	the	comparability	of	solutions,	given	that	(a)	CFMU	provides	a	kind	of	“ground	truth”	
for	the	measures	to	be	applied	in	“real	life”	and	(b)	DART	contributes	to	the	strategic	and	pre-tactical	
demand-capacity	balancing	evaluation,	simulation	and	display	tools,	aiming	to	reduce	ATC	workload.	
Thus,	this	comparison	provides	evidence	for	reaching	this	target.		
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2 Operational	Context,	Problem	
Specification	and	Collaborative	
Reinforcement	Learning	Algorithms	

The	WP3	scenario	objective,	as	this	has	been	specified	in	deliverable	D3.1	“Collaborative	Trajectory	
Prediction	 Scenarios	 and	 Requirements	 Specification”,	 is	 to	 demonstrate	 how	 DART	 agent-based	
modelling	 capability	 can	help	 to	accounting	 for	 the	 complexity	of	 the	ATM	due	 to	network	effects	
regarding	the	influence	of	the	traffic	to	individual	trajectories.		

Specifically,	the	scenario	concerns	regulating	flights	towards	resolving	DCB	problems,	assuming	that	
the	whole	process	 happens	 at	 the	planning	phase	 (i.e.,	 days	 before	operation),	 as	 opposed	 to	 the	
tactical	phase	(i.e.	in	real-time	during	operation).	The	scenarios	are	considered	to	be	developed	in	a	
specific	geographical	area	(Spain),	without	affecting	the	generality	of	the	solutions	proposed,	while	
interests	of	different	stakeholders,	such	as	Air	Navigation	Service	Providers	(ANSPs)	and	airspace	users	
(AUs),	are	taken	into	account:	Air	Navigation	Service	Providers	require	resolving	the	demand-capacity	
imbalances	efficiently,	while	airspace	users	(e.g.	airlines)	aim	to	operate	safely	and	efficiently	without	
large	delays.	

The	ANSP	role	is	represented	by	CRIDA	(local	level)	and	airspace	users’	role	is	represented	by	BR&T-E.	
The	separation	between	aircraft	is	guaranteed;	therefore,	resolutions	adopted	by	ATCO	won’t	be	part	
of	the	scope	in	the	operational	scenario	WP3.		

In	 this	 case,	 regulations	of	 type	C	 (i.e.	 delays)	will	 be	 applied	 to	 trajectories	due	 to	 the	 imbalance	
between	demand	and	capacity	of	airspace	sectors,	so	DART	will	have	to	apply	such	regulations	and	
obtain	the	final	trajectories	taken	into	account	surrounding	traffic.		

2.1 Data	and	Steps	
The	data	involved	in	this	scenario	is:	

• Flight	Plans:	Plans	associated	with	the	trajectories.	
• Airspace	 Structure	 &	 Capacity:	 Sectorization	 information	 available	 at	 operation	 day	

(sector	configurations	and	airblocks)	
• Strategic	Delay	Costs,	as	estimated	in	[Cook	et	al,	2015].	
• CFMU	datasets	providing	data	for	regulated	flights.	
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Figure	1	Data	required	for	WP3	Scenario	

	
Steps		

WP3	Scenario	considers	demand	and	capacity	balance	per	sector	(DCB):	This	should	result	to	regulating	
flights	by	imposing	delays	to	individual	flights,	taking	into	account	strategic	delay	cost	and	operational	
constraints.	In	doing	so	we	apply	algorithms	to	fulfil	two	main	objectives:	firstly,	detect	DCB	imbalances	
per	sector,	and	secondly,	resolve	the	imbalances.		

• Detecting	 DCB	 imbalances.	 The	 first	 step	 is	 to	 focus	 on	 detecting	 demand	 and	 capacity	
imbalances	 due	 to	 a	 lack	 of	 airspace	 capacity.	 This	 is	 possible	 by	 using	 data	 of	 airspace	
configurations	and	de-conflicted	trajectories.	

• Application	of	agent-based	methods	to	DCB	problems	resolution.	In	doing	so,	WP3	takes	into	
account	interactions	among	trajectories	(i.e.	traffic	conditions),	airspace	configurations,	and	
cost	indicators,	considering	all	trajectories	in	a	joint	manner.	

The	final	output	will	be	the	most	appropriate	trajectory	that	aircraft	must	finally	follow	(RBT),	jointly	
with	others.	The	output	will	be	a	single	trajectory	per	flight,	specifying	the	delay	imposed	due	to	DCB	
problems.		

2.2 Problem	Specification	

The	DCB	problem	(or	process)	considers	two	important	types	of	objects	in	the	ATM	system:	trajectories	
and	airspace	sectors.		

Aircraft	trajectories	are	series	of	spatio-temporal	points	of	the	generic	form	(longi,	lati,	alti,	ti),	denoting	
the	longitude,	latitude	and	altitude,	respectively,	of	the	aircraft	at	a	specific	time	point	ti.	A	specific	
type	of	trajectory	is	a	flight	plan,	which	is	an	intended	trajectory	consisting	of	events	of	flights	crossing	
air	blocks	and	sectors,	and	flying	over	specific	waypoints.	Specifically,	each	event	specifies	the	element	
that	is	crossed	(air	block	or	sector),	the	entry	and	exit	locations	(coordinates	+	flight	levels),	and	the	
entry	and	exit	times,	or	the	time	that	the	flight	will	fly	over	a	specific	waypoint.	Other	information	such	
as	estimated	 take-off	 time	are	 specified,	and,	 in	 case	of	delay,	 the	 calculated	 take-off	 time,	or	 the	
Estimated	time	of	entry	to	FIR	(HFIR).		

Sectors	are	air	volumes	segregating	the	airspace,	each	defined	as	a	group	of	air	volumes.	The	airspace	
sectorization	may	be	done	in	different	ways,	depending	on	the	number	of	active	(open)	sectors.	Only	
one	sector	configuration	is	active	at	a	time	for	a	specific	ATC.	
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Now,	let	there	be	N	trajectories	in	a	set	T	that	must	be	executed	over	the	airspace	in	a	total	time	period	
of	duration	H	(typically	in	24	hours).	The	set	of	sectors	in	all	possible	airspace	configurations	is	denoted	
by	 S.	 Time	 can	 be	 divided	 in	 intervals	 of	 duration	 Δt,	 equal	 to	 that	 of	 the	 period	 duration	 of	 the	
respected	measure	for	measuring	demand	evolution.	

Thus,	a	trajectory	T	in	the	set	of	trajectories	considered,	T,	is	a	time	series	of	elements	of	the	form:	

T=[(sector1,	entryt1,	exitt1)	....	(sectorm,	entrytm,	exittm))],		

where	sectori		is	in	S,	i=1,...m.		

It	must	be	noticed	that	(a)	given	different	delays	imposed	to	a	trajectory,	sectors	crossed	may	differ,	
due	 to	 the	 changing	 sector	 configurations;	 (b)	 this	 may	 result	 to	 a	 number	 of	 alternative	
representations	of	a	single	trajectory	(each	representation	crossing	a	different	set	of	sectors),	one	for	
each	possible	delay.		

This	 information	per	trajectory	suffices	to	measure	the	demand	Ds,p	 for	each	of	the	sectors	s	 in	the	
airspace	in	any	period	p	of	duration	Δt.	Specifically,	Ds,p=||Ts,p||,	i.e.	the	number	of	trajectories	in	Ts,p,	
where		

Ts,p	=	{T	in	T	|	T=(…,(s,	entryt,	exitt),…),	and		the	temporal	interval	[entryt,	exitt]	overlaps	with	p}.	

The	trajectories	in	Ts,p	are	defined	to	be	interacting	trajectories	for	the	period	p	and	the	sector	s.		

In	 other	 words,	 interacting	 trajectories	 are	 considered	 to	 be	 those	 that	 co-occur	 in	 space	 (within	
sectors)	and	time	(with	time	periods).	These	are	candidates	to	be	delayed,	i.e.	any	subset	of	these	may	
finally	result	with	delays.	

In	order	to	calculate	the	total	demand	at	any	given	state	we	use	the	Hourly	Entry	Count	measure	(HEC),	
creating	a	series	of	vectors	(one	for	each	period)	for	each	sector.	Given	the	demand	per	sector,	the	
DCB	problem	consists	of	these	cases	where	the	demand	exceeds	capacity:		

Each	sector	s	in	S	has	a	specific	capacity	Cs	that	determines	the	maximum	number	of	flights	flying	within	
the	sector	during	a	specific	time	interval.	Imbalances	of	sectors'	demand	and	capacity	occur	when	Ds,p	
>	Cs,	for	any	period	p	of	duration	Δt	in	H.	These	cases	result	to	hotspots	in	the	airspace.		

In	case	of	capacity	violation	for	a	period	p	and	sector	s,	the	interacting	trajectories	in	Ts,p	are	defined	
as	hotspot-constituting	trajectories:	one	or	more	of	these	trajectories	must	be	regulated	in	order	to	
resolve	the	imbalance	in	s	and	p.	

Towards	the	agent-based	formulation	of	the	problem,	we	consider	the	following:		

Each	agent	Ai	is	specified	to	be	the	aircraft	performing	a	specific	trajectory	in	a	specific	date	and	time.	
Thus,	we	consider	that	agents	and	trajectories	coincide	in	our	case	and	we	may	interchangeably	speak	
of	agents	Ai,	trajectories	Ti,	or	agents	Ai	executing	trajectories	Ti.	Agents,	as	it	will	be	specified,	have	
own	interests	and	preferences,	although	they	are	assumed	to	be	collaborative,	and	take	autonomous	
decisions	on	their	delays.	

Therefore,	agents	have	to	learn	joint	delays	to	be	imposed	to	their	trajectories	w.r.t.	the	operational	
constraints	concerning	the	capacity	of	sectors	crossed	by	these	trajectories.	

It	must	be	noted	that	agents	–although	considered	collaborative-	have	conflicting	preferences,	since	
they	prefer	to	impose	the	smallest	delay	possible	(preferably	none)	to	their	own	trajectory,	minimizing	
costs,	while	also	executing	their	planned	trajectories	safely	and	efficiently.		
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Given	an	agent	Ai,	the	traffic	for	that	agent	is	determined	to	be	the	trajectories	of	all	other	agents	with	
whom	it	interacts.	More	formally:	

Traffic(Ai)	=	{	Tj	|	Tj			is	a	trajectory	that	interacts	with	the	trajectory	Ti	executed	by	Ai	for	any	specific	
sector	crossed	by	Ti	and	any	time	period	within	H	}	,		

or	

Traffic(Ai)	=	 𝐓"#,%"#,% ,		

where	si	is	any	sector	crossed	by	trajectory	Ti,	and	p	is	any	time	period	in	H.	

A	society	of	agents	(A,	E)	is	modelled	as	a	coordination	graph	with	one	vertex	per	agent	Ai	in	A	and	
any	 edge	 (Ai,	 Aj)	 in	 E	 connecting	 agents	 with	 interacting	 trajectories	 in	 T.	 	 This	 set	 of	 edges	 are	
dynamically	updated	by	adding	new	edges	when	new	interacting	pairs	of	trajectories	appear.	

N(Ai)	denotes	the	neighbourhood	of	agent	Ai	in	the	coordinating	graph,	i.e.	the	set	of	agents	interacting	
with	 agent	 Ai	 including	 also	 itself:	 I.e.	 agents	 executing	 trajectories	 in	 Traffic(Ai).	 These	 are	 the	
peers/neighbors	of	Ai	in	the	agent	society.	

The	options	available	in	the	inventory	of	any	agent	Ai	for	contributing	to	the	resolution	of	hotspots	
may	differ	between	agents:	These,	for	agent	Ai	are	in	Di	={0,1,2,...,	MaxDelayi}.	We	consider	that	these	
may	be	ordered	by	the	preference	of	agent	Ai	to	any	such	option,	according	to	the	function	γ(i):	Di®Â.	
We	do	not	assume	that	agents	in	A-{Αi}	have	any	information	about	γ(i).	This	represents	the	situation	
where	airlines	 set	own	options	and	preferences	 for	delays	even	 in	different	 individual	 own	 flights,	
depending	on	operational	circumstances,	goals	and	constraints.	However,	we	expect	that	the	order	of	
preferences	should	be	decreasing	from	0	to	MaxDelayi,	although,	with	a	different	pace	for	different	
agents.	

Problem	statement:	Considering	any	two	peers	Ai,	and	Aj	in	the	society	(A,	E),	with	N(Ai)-{	Ai	},	these	
agents	must	select	among	the	sets	of	available	options	Di	and	Dj	respectively,	so	as	to	increase	their	
expected	payoff	w.r.t.	their	preferences	on	options	γ(i)	and	γ(j),	and	resolve	the	DCB	problem.	

2.3 Collaborative	Reinforcement	Learning	Algorithms	

We	now	recall	the	proposed	RL	methods	to	deal	with	the	multiagent	joint	DCB	policy	search	problem.	
The	key	concept	includes	interactions	between	flights.		

2.3.1 Independent	Reinforcement	Learners	(IndLearners)	

In	an	IndLearners	framework,	each	agent	learns	its	own	policy	independently	and	treats	other	agents	
as	part	of	the	environment.		

Each	local	action-state	function,	Qi,	for	agent	Ai	is	calculated	according	to	the	local	state,	si,	and	the	
local	strategy,	stri	(i.e.	the	amount	of	delay	for	its	own	regulation),		

Qi	is	updated	according	to	the	temporal-difference	error,	as	follows:	

𝑄'(𝑠, 𝑠𝑡𝑟)=	𝑄'(𝑠, 𝑠𝑡𝑟)+	α[𝑅𝑤𝑑'	(𝑠, 𝑠𝑡𝑟)	+	δ	𝑚𝑎𝑥"45𝑄'(𝑠′, 𝑠𝑡𝑟)-	𝑄'(𝑠, 𝑠𝑡𝑟)]		

The	reward	received	by	the	agent	Ai	takes	into	account	only	its	local	state	and	local	strategy.		
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2.3.2 Edge-Based	Collaborative	Reinforcement	Learners	(EdgeBased)	

Given	two	peer	agents	Ai	and		Aj	connected	by	an	edge	in	the	coordination	graph,	the	Q-function	for	
these	agents	is	denoted	as		Qij(sij,strij),	where	sij,	denotes	the	joint	state	related	to	the	set	of	the	two	
agents	Ai	and	Aj,	and		strij	denotes		the	joint	strategy	for	these	two	agents.		

The	Q-learning	update	rule	in	this	case	is	given	by	the	following	equation:	

	

𝑄'7(𝐬9:, 𝐬𝐭𝐫9:)	=	𝑄'7(𝐬9:, 𝐬𝐭𝐫9:)+	α	[
=>?#	("#,"45#)	

@(A#)
	+	
=>?B("B,"45B)	

@(AB)
	+	δ		𝑄'7(𝐬′9:, 𝐬𝐭𝐫'7∗ )-		𝑄'7(𝐬9:, 𝐬𝐭𝐫9:)]	,	

	

where,	str*	 is	the	best	known	strategy	for	agents,	and	it	 is	depicted	directly	from	the	agent's	value	
function,	Qi(s,str),	which	is	calculated	as	the	summation	of	local	Qij	values	in	its	neighbourhood:	

str*i	=		argmaxstri	Qi(si,stri)	,	and			

Qi(si,stri)		=	
D
E

𝑄'7(𝐬9:, 𝐬𝐭𝐫9:)7∈G(H#) .	

2.3.3 Agent-Based	Collaborative	Reinforcement	Learners	(AgentBased)	

As	in	EdgeBased	method,	given	two	peer	agents	performing	their	trajectories,	Ai	and		Aj,	their	joint	Q-
function	 is	 denoted	 succinctly	 Qij(sij,strij),	 where	 sij	 and	 strij	 denote	 the	 joint	 state	 and	 strategy,	
respectively,	related	to	the	two	agents,	as	defined	in	the	previous	section.	The	update	rule	is	then:	

	

𝑄'7(𝐬9:, 𝐬𝐭𝐫9:)	=	𝑄'7(𝐬9:, 𝐬𝐭𝐫9:)	+	α	[
=>?#B	 𝐬IJ,𝐬𝐭𝐫IJ KL	MN "ON,"45P

∗ QMN "N,"45P
@(R)R∈{',7} 	]	

	

where,	str*k	is	the	best	known	strategy	for	agent	Ak	in	state	s'k,	k	in	{i,j}.	Agents,	compute	their	local	Q-
functions	and	their	best	local	strategy	as	in	the	EdgeBased	method.	

2.3.4 Hierarchical	Reinforcement	Learning	Approach	(Hierarchical)	

In	 order	 to	 make	 RL	 computationally	 efficient	 and	 maybe	 more	 effective	 to	 produce	 solutions	 in	
complex	problems,	we	apply	abstraction	or	generalization	operators.	The	idea	behind	state	abstraction	
is	 that,	 instead	 of	 working	 in	 the	 ground	 (original)	 state	 space,	 the	 decision	 maker	 usually	 finds	
solutions	 in	 the	abstract	 state	 space	much	 faster	by	 treating	groups	of	 states	as	a	unit	by	 ignoring	
irrelevant	state	information.	

The	hierarchical	collaborative	RL	framework	comprises	two	levels:	The	ground	level	and	an	abstracted	
level	at	level	L.	The	proposed	hierarchical	RL	method	consists	of	the	following	stages:	

1. Start	with	the	original	state	space.	This	is	the	ground	representation	at	state	space	State.	At	this	
“ground”	level	the	distance	between	consecutive	time	points	is	one	time	instant.	
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K	 2K	

2. Map	 State	 to	 an	 abstract-feature	 space	 StateL,	 where	 |StateL|	 <<	 |State|.	 This	 includes	 the	
abstraction	of	the	state	space	so	as	to	reduce	the	original	space	State.		

	

	

	

	

	

	

Figure	2.	Obtaining	the	abstract	space:	Delay	is	partitioning	into	a	number	of	K	equidistant	intervals.	

As	shown	in	Figure	2,	all	ground	states	corresponding	to	delays	between	consecutive	time	points	
in	[t,	t+tsL]	are	mapped	to	the	same	state	in	the	abstract	space.		

3. Solve	MDP	in	StateL	space.		
4. Map	solution	 from	abstract	 space	Statel	 to	ground	State	space.	 In	 this	 step	we	consider	 that	

states	si	in	the	ground	set	of	states	State	that	have	been	mapped	to	the	same	abstract	state	siL	in	
StateL	have	the	same	Q*	values	per	agent	and	strategy,	equal	to	the	Q*	value	computed	by	solving	
the	MDP	in	the	abstract	space	siL.		

5. Solve	MDP	in	the	original	State	space.	One	of	the	multi-agent	RL	methods	used	is	applied	to	refine	
the	solution	in	the	abstract	state.	
	
Details	on	the	above	algorithms	are	provided	in	D3.2.	

2.3.5 Reward	Function	

For	all	the	above-mentioned	methods,	the	reward	function	of	agents,	as	specified	in	D3.2	is	as	follows:	

The	local	reward	of	an	agent	Ai,	denoted	RwdAi,	is	the	reward	that	the	agent	gets	by	executing	its	own	
trajectory	in	a	specific	joint	state	with	any	agent	executing	a	trajectory	in	Traffic(Ai),	according	to	the	
sectors'	capacities,	and	the	joint	strategy	of	agents.		The	joint	reward,	denoted	by	RwdAg,	for	a	set	of	
peers	Ag	specifies	the	reward	received	by	agents	in	Ag	by	executing	their	trajectories	in	their	joint	state,	
according	to	their	joint	strategy.			

The	reward	RwdAg	for	an	subset	Ag	of	A	depends	on	agents	participation	in	(contribution	to)	hotspots	
occurring	while	executing	their	trajectories	according	to	their	 joint	strategy	strtAg	 in	their	 joint	state	
stAg,	i.e.	according	to	their	decided	delays.	Formally:	

RwdAg(stAg,	strtAg)	=	λ1*C(stAg,	strtAg)	+	λ2*DC(stAg,	strtAg)	

where,	 C(stAg,	 strtAg)	 is	 a	 function	 that	 depends	 on	 the	 participation	 of	 agents	 in	 hotspots	 while	
executing	their	joint	strategy	in	their	joint	state,	and	DC(stAg,	strtAg)	is	a	function	aggregating	agents’	
strategic	delay	costs.	

State	

[	MaxDelay/K	]	0	 1	 2	

StateL	

MaxDelay	0	



DART	D3.3	Evaluation	and	Validation	of			
Collaborative	Trajectory	Prediction	Algorithm	
	

	

	

	

	

©	–	2018	–	DART	Consortium.		
All	rights	reserved.	Licensed	to	the	SESAR	Joint	Undertaking	under	conditions.	

	

	

	

Founding Members
17	

The	 parameters	 λ1	 and	 λ2	 are	 used	 for	 balancing	 between	 the	 number	 of	 hotspots	 and	 delays	
experienced	by	agents	towards	reaching	a	solution:	Zero	hotspots	and	the	minimum	possible	delay	per	
agent.		

In	the	DCB	problem,	both	functions	C(stAg,	strtAg)	and	DC(stAg,	strtAg)	represent	costs:	We	have	chosen	
C(stAg,	strtAg)		to	depend	on	the	total	duration	of	the	time	interval	in		which		agents	fly	over	a	congested	
sector.	This	is	multiplied	by	81	which	is	the	average	strategic	delay	cost	per	minute	(in	Euros)	in	Europe	
when	92%	of	the	flights	do	not	have	delays	[Cook	et	al,	2015].	If	there	is	not	any	congestion,	then	this	
is	a	large	positive	constant	that	represents	the	reward	agents	get	by	not	participating	in	any	hotspot.		

The	actual	form	of	C(stAg,	strtAg)		is	as	follows:	

	

C(stAg,	strtAg)		=	
−𝑇𝐷𝐶 ∗ 81	𝑖𝑓	𝑇𝐷𝐶 > 0

𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑅𝑒𝑤𝑎𝑟𝑑	if	𝑇𝐷𝐶 = 0	
	

	

TDC	is	the	total	duration	in	hotspots	for	agents	in	Ag.	The	first	case	holds	when	there	are	hotspots	in	
which	agents	participate	(thus,	the	total	duration	in	hotspots,	TDC,	is	above	0),	while	the	second	case	
holds	when	agents	do	not	participate	in	hotspots.	

The	DC(stAg,	strtAg)		component	of	the	reward	function	corresponds	to	the	strategic	delay	cost	when	
flights	delay	at	gate.	In	our	implementation,	this	depends	solely	on	the	minutes	of	delay	and	the	aircraft	
type,	as	specified	in	[Cook	et	al,	2015].		

As	such,	the	actual	form	of	this	function	is	as	follows:	

DC(stAg,	strtAg)	=	-	 𝐷𝑒𝑙𝑎𝑦H ∗ 𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑖𝑐𝐷𝑒𝑙𝑎𝑦𝐶𝑜𝑠𝑡(𝐷𝑒𝑙𝑎𝑦H, 𝐴𝑖𝑟𝑐𝑟𝑎𝑓𝑡𝑇𝑦𝑝𝑒 𝐴 )H∈Hm 	

	

Where	DelayA	is	the	delay	imposed	to	the	agent	A	and	𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑖𝑐𝐷𝑒𝑙𝑎𝑦𝐶𝑜𝑠𝑡	is	a	function	that	returns	
the	strategic	delay	cost	given	the	aircraft	type	of	agent	A	and	its	delay.		

Notice	 however	 that	 in	 the	 general	 case	 the	 function	DC(stAg,	 strtAg)	 could	 be	 taking	 into	 account	
broader	airline-specific	strategic	policies	and	considerations	regarding	flight	delays.	

2.3.6 Exploration	-	Exploitation	Scheme	

All	algorithms	utilize	the	ε-greedy	policy	as	combination	of	exploration	and	exploitation.	At	every	time	
step,	each	agent	makes	a	decision	based	on	ε,	 i.e.	the	probability	to	choose	randomly	or,	based	on	
experience,	act	in	a	greedy	way.	The	parameter	epsilon	is	initialized	to	0.9	and	is	diminished	by	0.01	
every	80	episodes.	When	the	threshold	of	0.001	is	reached,	epsilon	is	considered	zero.	This	results	at	
a	policy	of	pure	exploitation	after	7200	episodes,	where	only	greedy	actions	are	chosen.	
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3 Evaluation	Results	

3.1 Experimental	settings		

3.1.1 Evaluation	cases		

To	 evaluate	 the	 proposed	 methods,	 we	 have	 constructed	 evaluation	 cases	 of	 varying	
complexity/difficulty,	 by	 inspecting	 problem	 parameters	 in	 conjunction	 to	 the	 average	 delay	
considering	CFMU	reported	regulations.		

Each	case	corresponds	to	a	specific	day	of	2016	above	Spain	and	 its	complexity/difficulty	has	been	
determined	by	means	of	the	number	of	flights	involved,	the	average	number	of	interacting	flights	per	
flight	(which	is	translated	to	the	average	degree	for	each	agent	in	the	coordination	graph,	connecting	
that	agent	with	its	peers),	the	maximum	delay	imposed	to	flights	for	that	day	to	resolve	DCB	problems	
according	to	CFMU	data,	the	average	delay	for	all	regulated	flights	according	to	CFMU	data,	and	the	
number	of	hotspots		in	relation	to	the	number	of	flights	participating	in	these	hotspots.	

The	specific	method	used	for	constructing	these	evaluation	cases	is	detailed	in	Section	3.2.	

In	Table	1	we	can	see	the	different	cases	named	by	the	day	in	which	they	occurred.	

Specifically,	Table	1	specifies	per	case:	

Number	of	flights:		The	number	of	flights	for	that	particular	day	above	Spain.		

Average	 Degree	 in	 Coordination	 Graph	 (min/max):	 This	 indicates	 in	 average	 the	 traffic	 (i.e.	 the	
number	of	interacting	flights)	for	each	of	the	agents	(flights)	in	each	evaluation	case.	It	is	expected	that	
as	the	coordination	graph	becomes	more	“dense”,	i.e.	as	the	average	degree	increases,	the	problem	
becomes	more	computationally	demanding.	

Min/Max	 indicates	the	minimum	and	the	maximum	degree	reported	 in	the	coordination	graph	per	
evaluation	case,	while	ignoring	zeros.	

MaxDelay	(according	to	CFMU	data):	This	is	the	MaxDelay	that	is	allowed	to	all	flights.	It	is	equal	to	
the	maximum	delay	reported	by	CFMU	data	for	that	particular	day.	

Average	Delay	(according	to	CFMU	data):	This	is	the	average	delay	for	regulated	flights	reported	by	
CFMU	data	for	that	particular	day.	

Number	of	regulated	flights	(type	C	–	according	to	CFMU	data):	These	are	the	number	of	flights	with	
regulations	of	type	C	(i.e.	delays	due	to	DCB	problems)	reported	by	CFMU	data	for	that	particular	day.	

It	must	be	noted	that	regulated	flights	by	CFMU	leave	a	large	number	of	hotspots	unresolved	in	any	of	
the	cases	considered	(only	1	or	2	hotspots	are	resolved	per	case.).	
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Number	 of	 hotspots	 (number	 of	 flights):	 It	 indicates	 the	 number	 of	 hotspots	 to	 which	 a	 flight	
participates	in	this	evaluation	case,	together	(in	parenthesis)	with	the	number	of	flights	that	participate	
to	that	number	of	hotspots	(each	flight	may	participate	in	different	combinations	of	hotspots).	This	is	
also	an	indication	of	problems’	difficulty:	Of	course,	this	difficulty	may	also	depend	on	other	factors	
such	as	the	duration	of	flights	to	hotspots,	the	excess	on	capacity	for	these	hotspots	etc.		It	is	not	the	
purpose	of	this	deliverable	to	delve	into	these	issues,	but	we	do	need	to	indicate	major	differences	
among	evaluation	cases.	

	

	

Evaluation	
case		

Number	 of	
Flights	
(Agents)	

Average	
Degree	 in	
Coordination	
Graph	 (non-
zero	min/max)	

MaxDelay	
(according	
to	 CFMU	
data)	

Average	
Delay	
(according	
to	 CFMU	
data)	

Number	 of	
Regulated	
Flights	
(type	 C)	
(according	
to	 CFMU	
data)	

Number	 of	
hotspots	
(number	 of	
flights)	

Aug4	 5544	 6.41	(17-120)	 66	 12.41	 179	 33	(853)	

Aug7	 5868	 8.03	(23-121)	 112	 17.54	 475	 42	(1104)	

Aug10	 5500	 5.92	(19-125)	 59	 15.37	 402	 27	(759)	

Aug13	 6000	
10.89	 (22-
105)	 147	 16.02	 434	

53	(1460)	

Jul2	 5572	 6.39	(29-107)	 80	 17.89	 521	 29	(778)	

Jul10	 5824	 9.98	(21-175)	 175	 17.35	 305	 51	(1320)	

Jul12	 5408	 5.84	(21-95)	 95	 18.55	 281	 28	(820)	

Jun5	 5348	 6.77	(20-111)	 84	 14.99	 162	 32	(803)	

Sep2	 5498	 5.41	(21-112)	 88	 13.95	 165	 27	(754)	

Sep3	 5788	 5.24	(18-77)	 61	 14.41	 297	 26	(783)	

Table	1:	Evaluation	cases	used	for	evaluating	the	proposed	methods.	

3.1.2 Tuning	the	reward	function		

To	apply	the	proposed	methods	in	experimental	settings,	we	need	to	balance	between	the	two	reward	
constituents,	 by	 tuning	 the	 values	 of	 λ1	 and	 λ2.	 To	 do	 that,	 we	 have	 set	 λ1=1	 and	 experimentally	
configured	the	value	for	λ2.	The	table	below	shows	experiments	from	one	of	our	evaluation	cases,	that	
of	July	2,	which	–	according	to	the	average	of	CFMU	delays	imposed-	seems	to	be	one	of	the	“difficult”	
cases,	using	one	of	our	methods:	This	evaluation	case	has	one	of	the	largest	average	delay	imposed	to	
regulated	flights.	The	results	are	representative	of	the	other	methods	and	show	that	setting	λ2	to	a	
value	which	is	greater	than	30,	the	methods	need	more	time	(more	exploration	rounds)	to	converge,	
but	with	no	remarkably	better	results	(i.e.	the	difference	in	the	average	delay	achieved	for	λ2=50	is	
+0.03),	while	for	 larger	values	(more	than	50)	methods	become	unstable	(i.e.	do	not	converge	to	a	
specific	 joint	policy	 for	all	agents).	Nevertheless,	 for	values	 less	 than	10,	 the	situation	as	 far	as	 the	
average	delay	is	the	same	(the	difference	in	the	average	delay	achieved	compared	to	the	case	where	
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λ2=50	is	-0.1),	while	the	number	of	regulated	flights	show	to	increase.	Therefore,	we	decided	that	the	
value	20	is	the	one	that	should	be	used	for	λ2,	i.e.	for	balancing	between	the	“cost”	of	participating	in	
hotspots	and	the	strategic	delay	cost	when	there	are	not	hotspots.	

	

Evaluation	
case		

Number	 of	
Resulting	
Hotspots	

Number	
of	
Regulated	
Flights	

Average	 Delay	
for	 regulated	
flights		
(according	 to	
CFMU	 data)	
(min/max)	

Average	
Delay	 for	
regulated	
flights	

(IndLearners)	

Comments	

λ2=1	 0	 727	 17.89	(1-80)	 15.06	 	

λ2=10	 0	 731.2	 17.89	(1-80)	 14.48	 	

λ2=20	
(final)	

0	 724	 17.89	(1-80)	 14.58	 	

λ2=50	 0	 731.6	 17.89	(1-80)	 14.61	 50%	 more	 exploration	 was	
needed	 to	 achieve	
convergence	

λ2=100	 0-1	 716	 17.89	(1-80)	 15.44	 50%	 more	 exploration	 was	
utilized,	 convergence	 not	
always	achieved	

Table	2:	Experiments	with	different	λ2	values	for	evaluation	case	“July2”	with	the	IndLearners	method:	Results	
show	that	a	proportion	of	1:20	for	λ1:	λ2	is	the	most	suitable	one,	as	it	balances	effectively	between	low	average	
delay	and	low	number	of	regulated	flights,	while	methods	converge	with	less	exploration	rounds.	

3.2 Construction	of	the	evaluation	cases	
The	first	step	towards	constructing	an	evaluation	case	for	a	chosen	day	is	to	collect	all	the	Flight	Plans	
for	that	day	as	provided	by	the	Spanish	Operational	Data	source.	Each	Flight	Plan	may	be	associated	
to	multiple	Flight	Plan	Messages.	According	to	the	domain	experts,	we	construct	evaluation	cases	using	
the	 Flight	 Plan	 specified	 in	 the	 last	 message	 arriving	 before	 takeoff.	 In	 order	 to	 identify	 it,	 the	
timestamp	of	the	Message	arrival	 is	compared	to	the	Estimated	Entry	Date	and	Time	to	FIR	(HFIR).	
Some	Flight	Plans	span	in	two	consecutive	days,	for	example	a	flight	could	take	off	before	and	land	
after	midnight.	These	Flight	Plans	are	considered	for	both	days.	In	addition,	the	model	of	the	aircraft	
is	 stored	 for	 the	 calculation	 of	 strategic	 delay	 costs.	 Finally,	 flights	 are	 distinguished	 between	
commercial	and	non-commercial,	using	their	ID	and	the	Flight	Rules	(FLRL)	column.	Delays	cannot	be	
imposed	to	non-commercial	flights	(e.g.	military),	although	all	flights	participate	to	the	evaluation	case	
and	distinguished	by	a	flag	value.	

After	collecting	the	Flight	Plans	described	above,	we	cross-check	them	with	the	CFMU	Dataset.	In	order	
to	calculate	hotspots,	it	is	necessary	to	consider	all	those	flights	the	NM	has	information	about,	thus	
the	 Flight	 Plans	 that	 do	 not	 correspond	 to	 a	 CFMU	 entry	 are	 dropped.	 The	 cross	 identification	 is	
achieved	by	utilizing	the	ID	of	the	flight,	the	departure	and	destination	airport	and	the	Initial	Off-Block	
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Time	(IOBT).	Moreover,	delays	imposed	from	the	NM	to	resolve	hotspots	occurring	inside	the	Spanish	
Airspace,	are	identified.	

At	this	point,	the	Flight	Plans	contain	a	trajectory	crossing	air	volumes.	This	sequence	is	exploited	to	
compute	 the	 series	 of	 active	 sectors	 that	 each	 flight	 crosses-	 depending	 on	 the	 open	 airspace	
configurations,	together	with	the	entry	and	exit	time	for	each	of	these	sectors.	For	the	first	(last)	sector	
of	 the	 flight,	 where	 the	 departure	 (resp.	 arrival)	 airport	 resides,	 the	 entry	 (resp.	 exit)	 time	 is	 the	
departure	 (resp.	 arrival)	 time.	However,	 there	may	 exist	 flights	 that	 cross	 the	 airspace	 but	 do	 not	
depart	and/or	arrive	in	any	of	the	sectors	of	our	airspace:	In	that	case	we	only	consider	the	entry	and	
exit	time	of	sectors	within	the	airspace	of	our	interest.	

Therefore,	air	volumes	have	to	be	converted	to	sectors,	 in	order	to	be	attributed	with	capacity	and	
determine	 the	occurring	 hotspots.	 Airspace	 sectorization	 changes	 frequently	 during	 the	day,	 given	
different	operational	conditions	and	needs.	To	take	into	account	the	different	sectorizations,	we	apply	
the	following	procedure:	

1. for each Flight Plan 

2.         for each Possible Delay 

3.                 for each Air Volume 

4.                         for each Sector corresponding to the Air Volume 

5.                                 for each Configuration corresponding to the Sector 

6.                                         check if Configuration is active while the Air Volume is crossed 

7.  end of loops 

This	procedure,	exploiting	the	Airspace	Structure	–	i.e.	the	sector	configurations	and	sectorization-	as	
well	as	the	mappings	from	air	volumes	to	sectors,	all	provided	by	the	corresponding	DART	datasets,	
“translates”	air	volumes	crossed	by	trajectories	to	sectors.		

It	must	be	noticed	that	(a)	given	the	delay	imposed	to	a	trajectory,	sectors	crossed	may	vary,	due	to	
the	changing	configurations;	(b)	this	may	result	to	a	number	of	alternative	representations	of	a	single	
trajectory	(each	representation	crossing	a	different	set	of	sectors)	one	for	each	possible	delay.		

As	an	example,	consider	a	 trajectory	T	 that	crosses	 the	volume	R,	staying	 inside	the	volume	for	31	
minutes:	

T	=	[(R,	10:59,	11:31)]	

The	translation	to	sector	(or	sectors)	may	vary	when	delays	are	imposed.	For	delay	equal	to	zero	the	
result	could	be:	

T	=	[(	S1,	10:59,	11:00),	(	S2,	11:00,	11:30),	(	S3,	11:30,	11:31)]	

Meaning	that	the	active	configuration	changes	at	11:00	and	then	changes	again	at	11:30.	Imposing	one	
minute	of	delay	will	result	to	the	following	trajectory,	eliminating	the	first	sector	completely:	

T	=	[(	S2,	11:00,	11:30),	(	S3,	11:30,	11:32)]	

Finally,	imposing	31	minutes	of	delay	would	eliminate	the	second	sector	as	well:	

T	=	[(	S3,	11:30,	12:02)]	



EDITION	[02.00.00]	 	 DART	D3.3	Evaluation	and	Validation	of			
	 	 Collaborative	Trajectory	Prediction	Algorithm	

	 Copyright	2018	DART	
This	document	has	been	produced	within	the	scope	of	the	DART	project.	
The	utilisation	and	release	of	this	document	is	subject	to	the	conditions	
of	the	Grant	Agreement	no.699299	within	the	H2020	Framework	
Programme,	and	the	Consortium	Agreement	signed	by	partners.	

	

	

	

Founding Members
22	

This	process	results	in	Flight	Plans	consisting	of	Sectors	and	a	list	of	all	the	necessary	Sectors	with	their	
capacity.	This	information	is	consumed	to	create	an	evaluation	case	as	an	input	to	the	algorithms.	

The	 resulting	 files	 contain	 all	 the	 necessary	 information	 for	 the	 experiments.	 The	 first	 line	 of	 the	
evaluation	case	contains	all	the	vital	hyper	parameters:	

1. The	dimensions	of	the	Sector	Grid;	

2. The	number	of	flights	(i.e.	participating	agents);	

3. The	size	of	the	counting	period	for	computing	demand	evolution;	

4. The	counting	step	for	computing	demand	evolution;	

5. The	maximum	possible	delay	(derived	from	the	corresponding	maximum	delay	from	the	CFMU	
dataset);	

6. The	total	duration	of	the	experiment	(here	24	hours);	

7. The	learning	rate	α	(set	to	0.01	for	all	methods);	

8. The	discount	factor	δ	(set	to	0.99	for	all	methods);	

9. The	hyper	parameters	λ1:λ2	(set	to	1:20	for	all	methods).	

The	second	line	contains	the	capacities	of	all	needed	sectors	that	are	activated	and	crossed	during	the	
24	hours	considered.	The	last	two	sectors	are	virtual	and	have	a	capacity	set	to	500.	

Each	of	the	rest	of	the	lines	contains	the	information	of	one	flight:	

1. Flight	ID;	

2. The	trajectory	for	each	possible	delay	(takeoff	time,	sectors	crossed	and	time	spent	in	each	
one);	

3. The	aircraft	model;	

4. A	binary	value	representing	if	this	flight	is	a	commercial	one	or	not;	

5. Maximum	delay	for	that	flight.	

3.3 Evaluation	criteria		
To	measure	the	efficiency	of	 the	methods	and	the	quality	of	solutions	achieved,	we	have	specified	
qualitative	criteria	(metrics)	as	follows:	

- Learning	curves	of	all	methods	showing	the	computational	efficiency	of	the	methods:	These	
curves	 show	 per	 round	 of	 methods’	 application	 the	 average	 delay	 for	 all	 flights	 in	 the	
evaluation	case,	while	agents	chose	their	policies	(i.e.	as	they	learn	the	regulation-policy	to	be	
applied).	As	algorithms	converge	to	solutions,	the	number	of	hotspots	should	be	reduced	and	
eventually	 reach	 to	 zero,	 while	 the	 average	 delay	 should	 be	 reduced,	 signifying	 the	
computation	of	a	solution.	Therefore,	the	speed	of	reaching	that	point	(zero	hotspots)	and	the	
round	at	which	methods	 stabilize	agents’	 joint	policy	 (remaining	 to	 zero	hotspots	and	 to	a	
specific	 value	 for	 flights’	 average	 delay	 -	without	 oscillating	 between	 non-solutions	 and/or	
solutions,	and/or	different	average	delay	values)	signify	the	computational	efficiency	of	the	
method	to	reaching	solutions.	Of	course,	in	case	that	a	method	cannot	reach	a	solution	to	a	
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specific	 case	 it	may	converge	 to	a	 joint	policy	whose	application	 results	 to	more	 than	zero	
hotspots.		

- Number	of	regulated	flights.	

- Average	delays	of	flights:	We	report	on	(a)	the	average	delay	considering	only	the	regulated	
flights	(in	tables	with	results),	as	well	as	(b)	the	average	delay	for	all	flights	(in	learning	curves).	
In	any	case,	a	clarification	on	the	computation	of	average	delays	is	provided.	

- Distribution	of	delays	 to	 flights:	To	show	how	delays	are	distributed	 to	 flights,	we	provide	
histograms	showing	the	number	of	flights	with	(a)	0-9	minutes	of	delay,	(b)	10-29	minutes	of	
delay,	(c)	30-59	and	(d)	60-MaxDelay	minutes	of	delay.	Of	course,	if	it	happens	that	MaxDelay	
is	 less	 than	60,	 30	etc.,	 the	histogram	does	not	provide	data	 for	 the	 corresponding	 slot	of	
delays.		

Evolution	of	demand:	To	further	delve	into	the	quality	of	solutions	provided	by	the	proposed	methods,	
we	provide	for	highly-demanded	sectors	the	evolution	of	demand	per	time	period	at	the	initial	state	
(i.e.	at	the	problem	state)	and	the	evolution	of	demand	per	time	period	at	the	solution	state	(i.e.	at	
the	state	where	each	method	has	converged	to	a	joint	policy	for	agents	–	and	thus,	flights	have	been	
regulated).	

All	 measurements	 provided	 result	 by	 averaging	 the	 measurements	 recorded	 by	 5	 independent	
experiments	per	case	and	method.	

3.4 Experimental	results.	

The	following	tables	provide	results	for	all	methods	and	evaluation	cases.	

	

	

	

	

Evaluation	
case		

Number	
of	
Regulated	
Flights	
(type	 C)	
(according	
to	 CFMU	
data)	

Number	
of	
Resulting	
Hotspots		

(All	
methods)	

Number	 of	
Regulated	
Flights	

(IndLearners)	

Number	 of	
Regulated	
Flights	

(EdgeBased)	

Number	 of	
Regulated	
Flights	

(AgentBased)	

Number	 of	
Regulated	
Flights	

(Hierarchical)	

Comments	

Aug4	 179	 0	 672.2	 609.8	 665.7	 339.2	 	

Aug7	 475	 0	 986	 933	 994	 493.8	 	

Aug10	 402	 0	 620.2	 614.4	 635	 199.5	 	

Aug13	 434	 0	 1231	 1185.2	 1249.6	 876	 	

Jul2	 521	

0	 724	 719.4	 727.8	 424.5	 2	out	of	5	
experiments	
solved	with	
hierarchical	
approach	

Jul10	 305	 0	 1066	 1017	 1053.2	 569.2	 	
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Jul12	 281	 0	 618	 577.4	 573.2	 187.8	 	

Jun5	 162	 0	 649.6	 581.8	 637.5	 234.4	 	

Sep2	 165	 0	 559.6	 458.8	 473.8	 186.4	 	

Sep3	 297	 0	 728.8	 647.8	 680.5	 393	 	

Table	3:	The	number	of	regulated	flights	per	method	and	evaluation	case:	All	methods	resolve	DCB	problems,	
resulting	to	0	hotspots	per	evaluation	case.	Bold	indications	show	the	best	results,	while	the	underlined	ones	
show	the	second	best.	

Regarding	the	number	of	regulated	flights,	it	must	be	pointed	out	that	according	to	CFMU	data,	CFMU	
regulated	 flights	do	not	 resolve	 all	DCB	problems:	 I.e.	 even	 if	we	 impose	 regulations	 to	 the	CFMU	
regulated	flights	we	still	have	a	large	number	of	hotspots.	This	is	also	indicated	in	Section	4	in	a	specific	
evaluation	case,	as	representative	of	all	cases.	Therefore,	while	the	proposed	methods	do	increase	the	
number	of	regulated	flights	in	all	evaluation	cases,	the	imposed	regulations	result	to	0	hotspots.	Among	
the	methods,	the	Hierarchical	one,	reduces	considerably	(more	than	30%	in	all	cases)	the	number	of	
regulated	flights.	Indeed,	the	number	of	regulated	flights	resulting	from	the	Hierarchical	methods	are	
comparable	 to	 the	 CFMU	 regulated	 flights	 (with	 the	 later	 leaning	 a	 large	 number	 of	 hotspots	
unresolved).	 Beyond	 this	 remarkable	 result	 from	 the	Hierarchical	method,	 the	 EdgeBased	method	
manages	to	have	the	less	number	of	regulated	flights	among	the	rest	of	the	methods	(except	in	the	
Jul2	evaluation	case).		

	

	

	

Evaluation	case		

Average	 Delay	
for	 regulated	
flights	
(according	 to	
CFMU	 data)	
(min/max)	

Average	 Delay	
for	 regulated	
flights		

(IndLearners)	

Average	 Delay	
for	 regulated	
flights	

(EdgeBased)	

Average	 Delay		
for	 regulated	
flights	

(AgentBased)	

Average	 Delay		
for	 regulated	
flights	

(Hierarchical)	

Aug4	 12.41	 9.1	 11.55	 9.9	 18.38	

Aug7	 17.54	 7.43	 5.65	 7.44	 13.03	

Aug10	 15.37	 3.9	 4.3	 4.69	 9.18	

Aug13	 16.02	 8.08	 6.78	 7.7	 12.27	

Jul2	 17.89	 14.58	 14.93	 14.68	 25.46	

Jul10	 17.35	 7.11	 4.7	 5.91	 8.8	

Jul12	 18.55	 3.73	 2.89	 3.17	 5.68	

Jun5	 14.99	 6.33	 4.24	 5.11	 9.41	

Sep2	 13.95	 6.15	 3.28	 4.54	 7.3	

Sep3	 14.41	 7.64	 11.5	 10.88	 19.98	

Table	4:	The	average	delays	considering	all	regulated	flights,	per	method	and	evaluation	case,	compared	to	
CFMU	average	delays	per	evaluation	case:	All	methods	manage	to	considerably	reduce	the	average	delays	for	
the	regulated	flights,	compared	to	CFMU	values.	Bold	in	the	Hierarchical	column	indicate	the	cases	where	the	
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average	delay	reported	is	greater	than	that	of	CFMU,	while	bold	indications	in	other	columns	indicate	the	best	
results.	

Regarding	the	average	delay	to	all	regulated	flights,	as	results	reported	in	Table	4	indicate,	all	methods	
–	except	the	Hierarchical	one-	manage	to	reduce	considerably	the	CFMU	imposed	average	delay	in	all	
cases.	 This	 is	 a	 remarkable	 result	 for	 all	 methods.	 However,	 the	 Hierarchical	 method	 increases	
considerably	the	average	delay	for	regulated	flights	in	three	cases	(indicated	in	bold	in	Table	4.	

The	EdgeBased	approach	seems	to	perform	better	than	the	other	methods	in	all	cases,	except	in	three	
of	them	where	IndLearners	are	more	effective	in	reducing	the	delay.	It	should	be	noticed	that	in	all	
cases	the	difference	between	the	best	and	the	second	best	average	delays	is	quite	large.	
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Sep3	 	

Table	5:	The	learning	curves	of	all	methods	per	evaluation	case,	showing	how	methods	manage	to	learn	agents	
(flights)	joint	policies	to	resolve	DCB	problems,	resulting	to	0	hotspots,	while	reducing	the	average	delays	for	
all	(regulated	or	not)	flights.	The	x	axis	corresponds	to	the	episodes	of	methods,	while	the	y	axis	to	the	average	
delay	reported	for	all	flights.	

Results	in	Table	5	show	that	methods	manage	to	converge	effectively,	given	that	until	episode	7200	
they	 do	 intervene	 exploitation	 with	 exploration.	 However,	 it	 seems	 that	 there	 are	 cases	 where	
methods	 can	 converge	 even	 earlier.	 Specifically,	 IndLearners	 manage	 to	 converge	 or	 at	 least	
approximate	effectively	the	convergence	point	even	earlier	than	episode	6000,	except	in	one	case	–	
Jul2.	All	methods	converge	effectively	after	exploration	round	7200,	approaching	the	converge	point.	
It	should	be	noticed	that	“convergence”	does	not	imply	solving	the	problem:	A	method	may	converge	
to	 a	 joint	 policy,	 imposing	 regulations	 to	 flights	 that	 when	 applied	may	 still	 imply	 DCB	 problems.	
Fortunately,	this	happens	in	one	case	and	only	for	the	Hierarchical	method.	

Also,	for	Jul2,	which	it	seems	to	be	the	hardest	case	for	all	methods,	all	methods	converge	quite	late	
(i.e.	after	a	large	number	of	episodes).	For	that	evaluation	case,	the	Hierarchical	method	fails	in	3	out	
of	the	5	methods,	which	is	reflected	to	the			learning	curve	that	results	by	averaging	the	results	per	
episode	for	these	5	experiments.	

Finally,	it	must	be	noticed	that	the	Hierarchical	method	manages	to	achieve	the	lowest	average	delay	
among	all	flights,	which	is	explained	by	the	low	number	of	flights	that	it	manages	to	regulate	(although	
with	higher	–	in	average	–	delay	for	regulated	flights).		
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Table	6:	The	distribution	of	delays	to	flights	by	all	methods	and	CFMU,	and	per	experimental	case.	The	x	axis	
shows	the	delay	 imposed	while	the	y	axis	corresponds	to	the	number	of	 flights.	Notice	that	the	maximum	
delay	differs	between	evaluation	cases.	

Table	6	provides	evidence	on	 the	 fairness	of	 all	methods:	 Indeed,	 this	 is	 an	 inherent	 feature	of	all	
methods,	given	that	each	of	the	agents	–	in	collaboration	with	its	neighbours	in	the	coordination	graph	
(i.e.	those	that	correspond	to	interacting	flights	due	to	traffic)-	decides	on	own	regulations	towards	
resolving	the	DCB	problems	in	which	it	participates.	According	to	the	reward	function	that	each	agent	
evaluates	independently	from	others,	it	aims	to	reduce	hotspots	and	the	delay	imposed	to	it.	This	is	
shown	in	Table	6,	given	that	the	number	of	flights	with	delays	are	reduced	drastically,	while	moving	
from	small	to	large	delays.	This	happens	in	all	cases.	Notably,	this	happens	in	a	more	effective	way	for	
IndLearners,	and	EdgeBased	methods,	rather	than	for	the	Hierarchical	and	AgentBased	methods.	

Table	6	provides	further	comparison	of	distribution	of	delays	from	agent-based	methods	and	CFMU:	
In	all	cases	–	as	noticed	above-	agent-based	methods	assign	delays	to	more	flights	than	CFMU.	It	must	
further	be	noticed	that	delays	imposed	by	CFMU	to	the	majority	of	the	flights	are	within	the	range	of	
10	to	30	minutes.	In	very	few	cases,	CFMU	imposes	delays	until	60	minutes	to	a	considerable	number	
of	flights	(e.g	Aug10,	Jul2,	Jul12).	However,	given	the	fact	that	CFMU	regulations	do	not	resolve	but	1	
or	2	hotpots	per	evaluation	case,	it	seems	that	delays	from	1-9	minutes	are	not	preferable	or	are	within	
the	margins	of	ATM	system’s	tolerance.		In	any	case,	imposing	delays	from	1-10	minutes	to	more	flights	
and	10-29	minutes	delays	to	less	flights	than	those	of	CFMU,	may	result	to	resolving	all	hotspots.	
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Table	7:	The	evolution	of	demand	for	the	most	demanded	sector	per	evaluation	case	(a)	in	the	initial	problem	
state,	and	(b)	in	the	solution	proposed	by	the	IndLearners	method.	The	x	axis	shows	the	periods	for	measuring	
demand	according	to	the	hourly	counting	period	metric	(60’	window	with	a	step	of	30’),	while	the	y	axis	shows	
the	demand.	The	red	line	indicates	the	capacity	for	each	sector.	Thus,	any	bar	above	that	line	indicates	excess	
in	capacity	(hotspot).		

Finally,	 Table	 7	 shows	 the	 evolution	 of	 demand	 in	 different	 periods	 for	 all	 cases	 in	 (a)	 the	 initial	
problem,	and	(b)	after	imposing	the	regulations	decided	by	the	IndLearners	method.	Results	from	the	
other	methods	are	similar	(actually	very	close	to	those	presented	by	the	IndLearners)	so	we	did	not	
include	them	here.		

As	results	show,	methods	do	“push”	excess	of	capacity	in	subsequent	periods	within	the	same	sector,	
or	in	other	sectors	(not	shown	here).	This	happens	in	small	scale,	i.e.	solutions	affect	the	demand	for	
only	2	or	3	subsequent	periods	within	the	sector:	This	shows	that	delays	imposed	do	not	increase	the	
workload	per	sector	considerably,	leaving	much	space	for	increasing	further	the	demand,	if	this	is	also	
the	case	in	the	initial	problem.	

3.5 Discussion	of	 results	w.r.t.	 to	methods	efficiency,	 efficacy	and	
quality	of	solutions.	

The	results	reported	for	the	four	methods	show	the	following	qualities:	

• They	manage	to	find	solutions	–	i.e.	the	do	manage	to	regulate	flights	crossing	an	operational	
space	in	a	day	so	as	to	resolve	all	hotspots.		
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• They	manage	to	find	solutions	effectively:	They	do	converge	to	solutions	quite	fast,	few	rounds	
after	exploration,	in	most	of	the	cases.	

• They	manage	to	reduce	the	average	delay	for	the	regulated	flights	considerably,	compared	to	
the	average	delay	for	the	regulated	flights	reported	by	CFMU.	The	same	holds	for	the	average	
delay	considering	all	flights.	

• The	Hierarchical	method,	has	the	potential	to	reduce	significantly	the	regulated	flights,	and	
thus	the	average	delay	for	all	 flights,	compared	to	the	other	methods	and	of	course	CFMU.	
However,	 in	 its	 current	 implementation	 is	 not	 that	 efficient,	 and	 the	 average	 delay	 to	 the	
regulated	flights	is	much	higher	than	that	reported	by	the	other	methods.	

Below	we	provide	the	reported	results	in	a	consolidated	form	in	order	to	reach	final	conclusions.	

	
Figure	 3.	 	 Average	 delays	 for	 regulated	 flights	 from	 CFMU	 (dark	 blue	 line),	 Hierarchical	 (light	 blue	 line),	
IndLearners	(red	line),	EdgeBased	(gray	line),	AgentBased	(yellow	line).	The	x	axis	shows	evaluation	cases	and	
the	y	axis	the	average	delays.	Evaluation	cases	have	been	sorted	according	to	CFMU	average	delays.	

Figure	 3	 provides	 the	 average	 delays	 for	 the	 regulated	 flights	 per	 method	 (coloured	 lines),	 and	
evaluation	case	(x	–	axis).	Evaluation	cases	are	ordered	according	to	the	average	delay	reported	by	
CFMU	in	increasing	order.	

It	must	be	noticed	that	the	trend	of	the	average	delays	from	all	methods	do	not	follow	that	of	CFMU:	
The	average	delay	does	not	seem	to	increase	consistently	with	that	ordering	of	cases,	while	there	are	
some	peaks	in	delays	reported,	which	are	consistent	among	methods.	All	methods	follow	the	same	
pattern,	and	with	average	delays	that	are	lower	than	those	reported	by	CFMU,	while	the	Hierarchical	
has	three	peaks	which	result	to	average	delays	much	higher	than	those	of	CFMU.	

These	differences	 in	patterns	among	the	explored	methods	and	CFMU	reflect	the	shift	of	paradigm	
agent-based	methods	provide:	While	CFMU	regulate	flights	in	a	“first	enters	–	first	regulated”	basis,	
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agent-based	methods	devised	regulate	all	flights	jointly,	so	as	to	reach	a	solution	that	is	of	best	interest	
to	all	flights	–	as	much	as	it	is	possible.	

Among	the	methods,	the	IndLearners	(red	line)	seems	more	“stable”	across	cases,	while	the	EdgeBased	
(gray	line)	seems	to	provide	more	qualitative	results.	

	
Figure	 4.	 	 Average	 delays	 for	 regulated	 flights	 from	 CFMU	 (dark	 blue	 line),	 Hierarchical	 (light	 blue	 line),	
IndLearners	(red	line),	EdgeBased	(grey	line),	AgentBased	(yellow	line).	The	x	axis	shows	evaluation	cases	and	
the	y	axis	the	average	delays.	Evaluation	cases	have	been	sorted	according	to	IndLearners	average	delays.		

These	differences	among	methods	are	shown	in	in	a	better	way	in	Figure	4,	where	evaluation	cases	
are	 ordered	 according	 to	 IndLearners	 average	 delay	 for	 regulated	 flights,	 in	 increasing	 order:	 The	
pattern	of	average	delay	 reported	by	CFMU	 is	different	 from	that	 the	proposed	methods,	which	 is	
consistent	 among	methods.	 Again,	 among	 them	 the	 EdgeBased	method	 (grey	 line)	 provides	more	
qualitative	solutions	in	nearly	all	cases.	The	Hierarchical	method	follows	the	same	pattern	as	the	other	
methods,	however	with	consistently	increased	average	delay	in	all	cases	where	it	reached	a	solution.	

This	is	also	the	case	for	the	number	of	regulated	flights	per	evaluation	case,	as	shown	in	Figure	5:	All	
methods	 follow	the	same	pattern,	but	now,	 the	Hierarchical	method	manages	 to	provide	solutions	
with	 consistently	 less	 regulated	 flights	 than	 the	 other	 methods.	 Among	 the	 other	 methods,	 the	
EdgeBased	method	seems	to	report	the	lower	number	of	regulated	flights.		

CFMU	 regulated	 flights	 are	 less	 than	 those	 provided	 by	 all	 methods;	 however	 a	 large	 number	 of	
hotspots	per	evaluation	case	is	unresolved	with	those	regulated	flights.	 It	should	be	noted	that	the	
Hierarchical	method	manages	to	resolve	all	hotspots	with	a	comparable	number	of	(in	3	of	the	cases	
with	less)		regulated	flights.	
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Figure	5.	 	Number	of	regulated	flights	from	Hierarchical,	 IndLearners,	EdgeBased,	AgentBased	compared	to	
CFMU	 regulated	 flights	 per	 case.	 The	 x	 axis	 shows	 evaluation	 cases	 and	 the	 y	 axis	 the	 number	 of	 flights.	
Evaluation	cases	have	been	sorted	according	to	IndLearners	average	delays	(i.e.	corresponds	to	Figure	4).		

As	 a	 conclusion	 of	 the	 above,	 the	 EdgeBased	 methods	 provides	 in	 all	 cases	 the	 more	 qualitative	
solutions,	 in	 terms	of	 the	average	delay	 for	 the	regulated	 flights,	and	the	number	of	 the	regulated	
flights.	

However,	given	that	the	Hierarchical	method	manages	to	reduce	considerably	the	number	of	regulated	
flights,	 below	 we	 delve	 into	 the	 differences	 among	 Hierarchical,	 EdgeBAsed	 and	 IndLearners	
(AgentBased	do	not	seem	to	qualify	for	any	of	the	reported	measures	and	scenario).	

In	doing	so,	Figure	6	shows	the	difference	in	average	delay	in	regulated	flights	between	Hierarchical	
and	 the	 EdgeBased	 methods	 (AverageDelay.Hierarchical-AverageDelay.EdgeBased),	 while	 Figure	 7	
shows	the	corresponding	differences	between	Hierarchical	and	IndLearners.	In	both	cases	the	average	
difference	is	approx.	6	minutes	with	a	standard	deviation	of	2.5	and	4	minutes,	respectively.	Although	
more	experiments	are	necessary	to	delve	into	the	differences	of	methods,	Hierarchical	has	significant	
differences	to	EdgeBased	and	IndLearners,	as	far	as	the	average	delay	reported	is	concerned	(up	to	11	
min	for	EdgeBased	and	up	to	12	min	for	 IndLearners),	which	seems	to	slightly	 increase	as	methods	
impose	 larger	 delays,	 but	 the	 trend	 is	 the	 same:	 I.e.	 all	methods	 follow	a	polynomial	 trend	 as	 the	
difficulty	of	the	case	increases	(forcing	them	to	impose	larger	delays).	

As	 Figures	 8	 and	 9	 show,	 the	 Hierarchical	 method	 manages	 to	 regulate	 nearly	 half	 of	 the	 flights	
regulated	by	the	other	methods.	The	trend	in	increasing	the	number	of	flights	is	again	the	same	for	
the	methods,	but	it	must	be	noted	that	evaluation	cases	are	ordered	in	a	different	way	according	to	
that	criterion,	compared	to	the	order	according	to	the	average	delay.	This	signifies	that	the	difficulty	
of	a	case	depends	on	different	dimensions	that	are	orthogonal.	
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Figure	6.		(Left)	The	difference	in	average	delay	in	regulated	flights	between	Hierarchical	and	the	EdgeBased	
methods	(AverageDelay.Hierarchical-AverageDelay.EdgeBased).	The	x	axis	shows	evaluation	cases	which	have	
been	 sorted	 according	 to	 IndLearners	 average	 delays	 (i.e.	 corresponds	 to	 Figure	 4).	 (Right)	 The	 trends	 to	
impose	delays	for	Hierarchical	and	EdgeBased	methods	in	cases	–	cases	are	ordered	according	to	the	average	
delay	imposed	by	the	Edge	Based	method	in	increasing	order	and	without	including	Aug13.	

	

	
Figure	7.		(Left)	The	difference	in	average	delay	in	regulated	flights	between	Hierarchical	and	the	IndLearners	
methods	 (AverageDelay.Hierarchical-AverageDelay.IndLearners).	 The	 x	 axis	 shows	 evaluation	 cases	 which	
have	been	sorted	according	to	IndLearners	average	delays	(i.e.	corresponds	to	Figure	4).	(Right)	The	trends	to	
impose	delays	for	Hierarchical	(red	line)	and	EdgeBased	(blue	line)	methods	in	all	cases	–	cases	are	ordered	
according	to	the	average	delay	imposed	by	the	IndLearners	method	in	increasing	order.	
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Figure	 8.	 	 (Left)	 The	 difference	 in	 in	 regulated	 flights	 between	 Hierarchical	 and	 the	 EdgeBased	 methods	
(RegulatedFlights.Hierarchical-RegulatedFlights.EdgeBased).	 The	 x	 axis	 shows	 evaluation	 cases	which	 have	
been	sorted	according	to	IndLearners	average	delays	(i.e.	corresponds	to	Figure	4).	(Right)	The	trends	to	the	
number	of	regulated	flights	for	Hierarchical	(red	line)	and	EdgeBased	(blue	line)	methods	in	all	cases	–	cases	
are	ordered	according	to	the	number	of	regulated	flights	imposed	by	the	IndLearners	method	in	increasing	
order.	

	

	

	
Figure	 9.	 	 (Left)	 The	 difference	 in	 in	 regulated	 flights	 between	 Hierarchical	 and	 the	 IndLearners	methods	
(RegulatedFlights.Hierarchical-RegulatedFlights.	IndLearners).	The	x	axis	shows	evaluation	cases	which	have	
been	sorted	according	to	IndLearners	average	delays	(i.e.	corresponds	to	Figure	4).	(Right)	The	trends	to	the	
number	of	regulated	flights	for	Hierarchical	(red	line)	and	IndLearners	(blue	line)	methods	in	cases	–	cases	are	
ordered	according	to	the	number	of	regulated	flights	imposed	by	the	IndBAsed	method	in	increasing	order.	
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3.6 Incorporating	airlines	preferences	/constraints	

3.6.1 Constructing	evaluation	cases	with	airlines	preferences	/	constraints	

In	this	section	we	explore	two	issues:	(a)	The	tolerance	of	the	methods	to	strict	max	delay	(MaxDelay)	
restriction	 for	 all	 flights	 (denoted	 as	Global	Max	delay),	 and	 (b)	 to	 the	 ability	 of	methods	 to	 solve	
problems	by	incorporating	strict	conditions	and	preferences	to	the	MaxDelay	of	some	of	the	flights	
(denoted	by	Local	Max	Delay:	The	MaxDelay	to	a	subset	of	flights).		

The	 difference	 in	 the	 evaluation	 cases	 where	 airlines	 preferences	 are	 incorporated,	 is	 that	 the	
individual	maximum	delay	of	each	flight	may	vary	to	that	of	the	others.		Here,	a	subset	of	flights	were	
chosen	(by	utilizing	the	departure	airport),	to	be	assigned	a	smaller	amount	of	maximum	delay.	These	
airports	were	the	five	biggest	in	Spain,	thus	representing	the	need	of	less	delay	in	airports	with	high	
traffic.		

We	present	results	from	the	cases	Aug07.	This	is	a	typical	case,	among	the	cases	considered.		

The	 result	 of	 selecting	 flights	 for	 strictest	 allowed	 delay,	 is	 that	 roughly	 30%	 of	 the	 flights	 in	 the	
evaluation	case	have	a	lower	delay	threshold	than	the	rest.	These	flights	are	also	responsible	to	roughly	
the	30%	of	the	occurring	hotspots.		

We	considered	subcases	with	Global	Max	Delay	varying	in	{30,40,50}	and	Local	Max	Delay	varying	in	
{5,10,	15,25,35,	45,	55}.	

3.6.2 Experimental	results	

Evaluation	
case		

(Aug7	-	

GlobalMaxD
elay)	

Number	
of	
Resulting	
Hotspots		

(IndLearn
ers)	

Number	of	
Resulting	
Hotspots		

(EdgeBase
d)	

Number	of	
Resulting	
Hotspots		

(AgentBas
ed)	

Number	
of	
Resulting	
Hotspots		

(Hierarchi
cal)	

Number	
of	
Regulated	
Flights	

(IndLearn
ers)	

Number	
of	
Regulated	
Flights	

(EdgeBase
d)	

Number	
of	
Regulated	
Flights	

(AgentBas
ed)	

Number	
of	
Regulated	
Flights	

(Hierarchi
cal)	

30	 1	 1-2	 4	 1	 974.6	 888	 998	 585.4	

40	 0	 0	 0	 0	 986.2	 903	 985	 673.5	

50	 0	 0	 0	 0	 975.8	 884	 943	 810.5	

	

Table	8:	The	number	of	regulated	flights	per	method	and	evaluation	case	when	there	are	strict	Global	Max	
Delays	(i.e.	for	all	flights):	Methods	cannot	always	resolve	DCB	problems	with	strict	MaxDelays	(indicated	in	
red	for	the	Aug7	evaluation	case).	Bold	indications	show	the	best	results,	while	the	underlined	ones	show	the	
second	best.	
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Evaluation	case		

(Aug7	-	

GlobalMaxDelay)	

Average	 Delay		
for	 regulated	
flights	
(according	 to	
CFMU	 data)	
(min/max)	

Average	 Delay		
for	 regulated	
flights	

(IndLearners)	

Average	 Delay		
for	 regulated	
flights	

(EdgeBased)	

Average	 Delay		
for	 regulated	
flights	

(AgentBased)	

Average	 Delay		
for	 regulated	
flights	

(Hierarchical)	

30	 17.54	 6.64	 6.55	 7.84	 10.64	

40	 17.54	 7.14	 6.21	 8.85	 9.98	

50	 17.54	 7.39	 6.28	 9.1	 7.72	

	

Table	9:	The	average	delays	achieved	for	all	regulated	flights	per	method	and	evaluation	case	when	there	are	
strict	Global	Max	Delays	(i.e.	for	all	flights)	compared	to	CFMU	average	delays	per	evaluation	case:	All	methods	
manage	to	reduce	considerably	the	average	delays	for	the	regulated	flights,	compared	to	CFMU	values.	Bold	
indications	show	the	best	results.	

Tables	 8	 and	 9	 show	 that	 all	 methods	 manage	 to	 solve	 DCB	 problems,	 even	 if	 strict	 max	 delays	
conditions	are	set	to	all	flights.	However,	for	MaxDelay=30’	all	methods	could	not	provide	a	solution.	
It	 must	 be	 noted	 that	 this	 depends	 on	 each	 evaluation	 case:	 For	 instance	 for	 Jun5,	 even	 with	
MaxDelay=30	we	did	have	solutions	from	the	proposed	methods	(i.e.	delays	to	flights	resulting	to	zero	
hotspots).	

In	all	cases	the	EdgeBased	approach	provides	the	best	average	delay	for	the	regulated	flights,	and	the	
second	best	(after	the	Hierarchical)	total	number	of	regulated	flights.		

It	must	be	noticed,	that	contrary	to	the	other	methods,	the	Hierarchical	method	reduces	the	number	
of	regulated	flights	as	conditions	become	stricter,	with	the	cost	of	 increasing	the	average	delay	for	
those	flights.	The	other	methods	increase	slightly	the	number	of	regulated	flights	(notice	that	for	30’	
methods	do	not	provide	solutions),		but	reduce	the	average	delay	on	regulated	flights.	

	
Evaluation	
case		

Learning	Curves		

Aug7	
Global	
MaxDelay	

=30	
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Aug7	
Global	
MaxDelay	

=40	

	
Aug7	
Global	
MaxDelay	

=50	

	

Table	10:	The	learning	curves	of	all	methods	for	the	Aug7	evaluation	case,	showing	how	methods	manage	to	
learn	agents’	(flights)	joint	policies	to	resolve	DCB,	when	requirements	for	the	global	delay	(i.e.	the	MaxDelay	
for	all	flights)	are	strict.	The	x	axis	corresponds	to	the	episodes,	while	the	y	axis	to	the	average	delay	reported	
for	all	flights.	

Learning	 curves	 in	 all	 sub-cases	 show	 that	 methods	 do	 converge	 rather	 slowly,	 compared	 to	 the	
original	case,	which	is	explained	by	the	more	strict	conditions	they	have	to	satisfy.	It	should	be	noticed	
that	EdgeBased	and	IndLearners	converge	more	effectively,	while	this	is	not	the	case	for	AgentBased	
and	Hierarchical,	even	when	the	Global	Max	Delay	is	50’.	

The	results	are	similar	when	we	restrict	the	max	delay	for	a	subset	of	the	flights:	In	that	case	we	may	
require	 these	 flights	 (nearly	30%	of	 flights	participating	 in	hotspots)	 to	have	Max	Delay	 (Local	Max	
Delay)	even	equal	to	15’	without	affecting	considerably	the	total	number	of	regulated	flights	and	the	
average	delay	for	all	regulated	flights.	
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Evaluatio
n	 case	
Name	

(Aug7	-	

LocalMa
xDelay)	

Number	
of	
Resulting	
Hotspots		

(IndLearn
ers)	

Number	
of	
Resulting	
Hotspots		

(EdgeBas
ed)	

Number	
of	
Resulting	
Hotspots		

(AgentBa
sed)	

Number	
of	
Resulting	
Hotspots		

(Hierarch
ical)	

Number	
of	
Regulate
d	Flights	

(IndLearn
ers)	

Number	
of	
Regulate
d	Flights	

(EdgeBas
ed)	

Number	
of	
Regulate
d	Flights	

(AgentBa
sed)	

Number	
of	
Regulate
d	Flights	

(Hierarch
ical)	

5	 2-3	 3	 6	 3	 954	 789.5	 849.5	 417	

10	 2	 2	 4	 2	 1003.4	 833.5	 846.5	 502	

15	 0	 0	 4	 0	 998	 883	 899	 455	

25	 0	 0	 0	 0	 989.4	 861	 909	 437	

35	 0	 0	 0	 0	 986.4	 864	 979	 449.5	

45	 0	 0	 0	 0	 986.6	 894	 970.4	 455.5	

55	 0	 0	 0	 0	 988.4	 911.5	 980.5	 449	

Table	11:	The	number	of	regulated	flights	per	method	and	evaluation	case	when	there	are	strict	Local	Max	
Delays	 (i.e.	 strict	 Max	 Delay	 preferences	 for	 some	 of	 the	 flights):	 Methods	 can	 not	 always	 resolve	 DCB	
problems	with	strict	Local	MaxDelays	(indicated	in	red	for	the	Aug7	evaluation	case).	Bold	indications	show	
the	best	results,	while	the	underlined	ones	show	the	second	best.	

	

Evaluation	 case	
Name	

(Aug7	-	

LocalMaxDelay)	

Average	
Delay	 	 for	
regulated	
flights	
(according	 to	
CFMU	 data)	
(min/max)	

Average	
Delay	 for	
regulated	
flights	
(IndLearners)	

Average	
Delay	 for	
regulated	
flights		

(EdgeBased)	

Average	
Delay	 	 for	
regulated	
flights	

(AgentBased)	

Average	
Delay	 	 for	
regulated	
flights	

(Hierarchical)	

5	 	 17.54		 7.1	 6.09	 6.6	 11.54	

10	 	 17.54		 7.54	 5.89	 6.65	 10.47	

15	 	 17.54		 7.27	 6.86	 7.23	 12.61	

25	 	 17.54		 7.28	 6.13	 7.49	 13.45	

35	 	 17.54		 7.23	 6.03	 8.31	 14.15	

45	 	 17.54		 7.3	 5.7	 8.27	 14.05	

55	 	 17.54		 7.48	 5.86	 8.36	 12.69	

Table	12:	The	average	delays	achieved	for	all	regulated	flights	per	method	and	evaluation	case	when	there	are	
strict	Local	Max	Delays	(i.e.	strict	Max	Delay	preferences	for	some	of	the	flights)	compared	to	CFMU	average	
delays	per	evaluation	case:	All	methods	manage	to	considerably	reduce	the	average	delays	for	the	regulated	
flights,	compared	to	CFMU	values.	Bold	indications	show	the	best	results.	
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Evaluation	
case		

Learning	Curves		

Aug7	
Local	
MaxDelay	

=5	

	
Aug7	
Local	
MaxDelay	

=10	
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Aug7	
Local	
MaxDelay	

=15	

	
Aug7	
Local	
MaxDelay	

=25	

	
Aug7	
Local	
MaxDelay	

=35	
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Aug7	
Local	
MaxDelay	

=45	

	
Aug7	
Local	
MaxDelay	

=55	

	

Table	13:	The	learning	curves	of	all	methods	for	the	Aug7	evaluation	case,	showing	how	methods	manage	to	
learn	agents’	(flights)	joint	policies	to	resolve	DCB,	when	requirements	for	the	delays	for	some	of	the	flights	
are	strict.	Local	MaxDelay	indicates	the	MaxDelay	for	some	of	the	flights,	while	the	Max	Delay	for	the	rest	of	
the	flights	is	equal	to	that	in	the	original	evaluation	case.	The	x	axis	corresponds	to	the	episodes,	while	the	y	
axis	to	the	average	delay	reported	for	all	flights.		
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4 Visualizations	of	solutions	overview	in	
space	and	time	

This	section	provides	visualizations	of	solutions	overview	in	space	and	time	in	one	of	the	evaluation	
cases:	Jul2,	which	is	the	“hardest”	among	cases.	However,	results	shown	are	representative	of	other	
cases	and	indicative	of	the	benefits	and	limitations	of	proposed	methods.	

4.1 Time	series	of	sector	loads	

	

Flights’	trajectories	provided	by	the	initial	problem	state	(Original),	after	CFMU	regulations	(CFMU),	
and	 after	 the	 regulations	 prescribed	 by	 the	 methods	 (IndLearners,	 EdgeBased,	 AgentBased,	
Hierarchical)	were	aggregated	by	the	sectors	and	time	intervals	of	length	60	minutes	with	a	shift	of	30	
minutes,	resulting	in	time	series	of	sector	entry	counts	attached	to	the	sectors	(Figure	10).	
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Figure	10. Time	series	of	sector	entry	counts	under	different	regulation	scenarios.	

The	hourly	values	were	compared	with	the	sector	capacities	(the	capacities	were	extracted	from	the	
hourly	values);	see	Figure	11.	There	were	19	sectors	whose	capacities	were	exceeded	at	least	once	at	
least	by	1	flight	per	hour	either	by	the	original	flights	or	by	the	CFMU-regulated	flights.	Among	them,	
the	capacities	of	2	sectors	were	exceeded	only	by	the	original	trajectories,	capacities	of	7	sectors	only	
by	the	CFMU	trajectories,	and	the	capacities	of	10	sectors	were	exceeded	by	both	original	and	CFMU	
trajectories.	 In	 Figure	 11,	 the	 time	 series	 of	 these	 sectors	 are	 shown	 in	 red,	 blue,	 and	 yellow,	
respectively.	Figure	12	shows	only	the	excesses	of	the	sector	capacities,	i.e.,	the	positive	differences	
between	the	loads	and	the	capacities.	It	includes	the	graphs	only	for	the	original	and	CFMU-regulated	
trajectories.	There	were	no	excesses	of	sector	capacities	in	the	regulation	scenarios	Agent	Based,	Edge	
Based,	Hierarchical,	and	IndLearners.		

	

Figure	11. Differences	between	the	hourly	sector	loads	(numbers	of	entries)	and	the	sector	capacities.	
Coloured	lines	correspond	to	the	sectors	whose	capacities	were	exceeded	by	the	original	(red),	CFMU-

regulated	(blue),	or	both	original	and	CFMU-regulated	flights	(yellow).	In	all	four	regulation	scenarios	Agent	
Based,	Edge	Based,	Hierarchical,	and	IndLearners,	the	differences	between	the	sector	loads	and	capacities	do	

not	exceed	0,	i.e.,	there	are	no	capacity	excesses.	
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Figure	12. Excesses	of	sector	capacities	by	the	original	and	CFMU-regulated	flights.	The	colours	have	the	
same	meanings	as	in	Figure	11.		

The	following	image	of	a	table	contains	the	list	of	sectors	whose	capacities	were	exceeded.	

	

Figure	13. For	the	sectors	whose	capacities	were	exceeded,	the	table	shows	the	numbers	of	the	excess	
events,	the	total	amounts	of	excess	(sum	of	all	excesses),	and	the	maximal	and	minimal	excesses	based	on	

the	original	and	CFMU-regulated	flights.	The	colours	have	the	same	meanings	as	in	Figure	11.	

The	following	maps	and	3D	displays	show	the	sectors;	the	colouring	from	yellow	to	red	represents	the	
maximal	capacity	excess	by	the	original	flights	(Figure	14	-	Figure	16)	and	by	the	CFMU-regulated	flights	
(Figure	17	-	Figure	19).	
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Figure	14. The	sectors	whose	capacities	were	exceeded	by	the	original	or	CFMU-regulated	flights	(19	sectors	
in	total).	The	colouring	from	yellow	to	red	represents	the	maximal	capacity	excess	by	the	original	flights.	

	

	

Figure	15. A	3D	view	shows	the	3D	shapes	of	the	sectors	whose	capacities	were	exceeded.	The	colouring	is	
the	same	as	in	Figure	14.	
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Figure	16. The	3D	view	shows	the	sectors	whose	capacities	were	exceeded	by	3	or	more	flights	per	hour	
based	on	the	original	flight	data.	

	

Figure	17. The	map	shows	the	same	19	sectors	as	in	the	previous	figures.	The	colouring	from	yellow	to	red	
represents	the	maximal	capacity	excess	by	the	CFMU-regulated	flights.	
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Figure	18. A	3D	view	shows	the	3D	shapes	of	the	sectors	whose	capacities	were	exceeded.	The	colouring	is	
the	same	as	in	Figure	17.	

	

Figure	19. The	3D	view	shows	the	sectors	whose	capacities	were	exceeded	by	3	or	more	flights	per	hour	
based	on	the	CFMU-regulated	flight	data.	
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4.2 Events	of	exceeding	sector	capacity	
	

We	have	extracted	the	events	of	the	sector	capacity	excess	from	the	time	series	of	the	sector	 load	
differences	 to	 the	 capacities.	 The	 following	maps	 and	 space-time	 cubes	 show	 the	 spatio-temporal	
distributions	 of	 the	 events	 of	 sector	 capacity	 being	 exceeded	 based	 on	 the	 original	 and	 CFMU-
regulated	flight	data.	The	events	are	represented	by	circles;	the	sizes	are	proportional	to	the	excess	
values	 (see	 the	 map	 legend).	 The	 spatial	 positions	 of	 the	 events	 are	 the	 positions	 of	 the	 sector	
centroids.	The	temporal	axis	in	the	cubes	goes	from	the	bottom	to	the	top.	
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Figure	20. The	maps	represent	the	events	of	sector	capacity	excess	based	on	the	original	(red)	and	CFMU-
regulated	(blue)	flight	data.	The	circle	sizes	are	proportional	to	the	excess	amounts.	

	

	

Figure	21. The	capacity	excess	events	are	shown	in	a	space-time	cube.	The	vertical	dimension,	from	bottom	
to	top,	represents	time.	The	events	are	represented	by	circles;	the	sizes	and	colours	are	as	in	Figure	20.	
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4.3 Flight	delays	in	space	and	time	

In	the	following	maps	and	space-time	cubes,	the	delays	within	sectors	are	represented	by	circles	with	
the	sizes	proportional	to	the	delay	durations.	
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Figure	22. Flight	delays	are	represented	by	circles	positioned	at	the	sector	centroids.	The	sizes	are	
proportional	to	the	delay	durations.	From	top	to	bottom:	delays	decided	by	CFMU,	AgentBased,	EdgeBased,	

Hierarchical,	and	IndLearners.	
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Figure	23. The	same	maps	as	in	Figure	22	are	shown	together	(without	legends)	for	comparison.	From	top	to	
bottom	and	from	left	to	right:	CFMU,	AgentBased,	EdgeBased,	Hierarchical,	and	IndLearners.		

The	maps	show	that,	compared	to	the	CFMU,	the	methods	AgentBased,	EdgeBased,	Hierarchical,	and	
IndLearners	reduce	the	delays	on	the	east	(areas	of	Barcelona,	Canary	Islands,	and	Valencia)	and	on	
the	south	(Seville	and	Granada)	but	increase	the	delays	on	the	northwest	of	Spain.	
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Figure	24. The	space-time	cubes	show	the	spatio-temporal	distribution	of	the	delays.	The	time	axis	is	
oriented	upwards.	From	top	to	bottom	and	from	left	to	right:	CFMU,	AgentBased,	EdgeBased,	Hierarchical,	

and	IndLearners.	
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The	cubes	show	that,	compared	to	the	CFMU,	the	methods	AgentBased,	EdgeBased,	Hierarchical,	and	
IndLearners	perform	notably	better	in	the	first	half	of	the	day.	In	all	areas	except	the	northwest	they	
also	perform	well	 in	 the	 second	half	of	 the	day.	 The	delays	 in	 the	north-western	area	 significantly	
increase	by	the	end	of	the	day	according	to	all	methods.	

4.4 Flight	delay	statistics	
Here	we	look	at	statistics	of	flight	delays	introduced	by	different	approaches.	For	each	flight	according	
to	CFMU,	AgentBased,	EdgeBased,	Hierarchical,	and	IndLearners,	we	compute	

• The	difference	of	the	flight	start	time	with	respect	to	the	original	(i.e.,	the	start	delay)	
• The	difference	of	the	flight	end	time	with	respect	to	the	original	(i.e.,	the	end	delay)	
• The	difference	of	the	flight	start	time	with	respect	to	the	CFMU	(i.e.,	the	increase	or	decrease	

of	the	start	delay)	
• The	difference	of	the	flight	end	time	with	respect	to	the	CFMU	(i.e.,	the	increase	or	decrease	

of	the	end	delay)	
The	following	statistics	have	been	obtained	only	from	those	flights	where	either	the	start	time	or	the	
end	time	differed	from	the	original.		

4.4.1 CFMU	flight	delay	statistics	

	

4.4.2 AgentBased	flight	delay	statistics	
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4.4.2.1 Counts	of	the	flights	with	positive	differences	to	the	original	times	(i.e.,	
increases)	

AgentBased:	

	

	

The	figures	show	that	there	are	673	flights	whose	starts	are	regulated	by	the	AgentBased	method	more	
than	by	CFMU,	and	there	are	665	flights	whose	ends	are	regulated	more	than	by	CFMU.	

CFMU:	

	

The	AgentBased	method	introduces	delays	in	a	larger	number	of	flights	than	CFMU.	

4.4.2.2 Average	positive	differences	on	delays:	
AgentBased:	

	

	

CFMU:	
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4.4.2.3 Counts	of	the	flights	with	negative	differences	to	the	original	times	(i.e.	
decreases)	

AgentBased:	

	

	
While	 the	 AgentBased	 method	 increases	 the	 number	 of	 regulated	 flights	 compared	 to	 CFMU,	 it	
reduces	delays	in	48	flights	that	were	regulated	by	CFMU.	

CFMU:	

	

4.4.2.4 Average	negative	differences	on	delays:	
AgentBased:	

	

	

CFMU:	

	

4.4.3 EdgeBased	flight	delay	statistics	
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4.4.3.1 Counts	of	the	flights	with	positive	differences	to	the	original	times		
EdgeBased:	

	

	

The	figures	show	that	there	are	676	flights	whose	starts	are	regulated	by	the	EdgeBased	method	more	
than	by	CFMU,	and	there	are	668	flights	whose	ends	are	regulated	more	than	by	CFMU.	

CFMU:	

	

The	EdgeBased	method	introduces	delays	in	a	larger	number	of	flights	than	CFMU.	

4.4.3.2 Average	positive	differences:	
EdgeBased:	

	

	

CFMU:	

	

	



EDITION	[02.00.00]	 	 DART	D3.3	Evaluation	and	Validation	of			
	 	 Collaborative	Trajectory	Prediction	Algorithm	

	 Copyright	2018	DART	
This	document	has	been	produced	within	the	scope	of	the	DART	project.	
The	utilisation	and	release	of	this	document	is	subject	to	the	conditions	
of	the	Grant	Agreement	no.699299	within	the	H2020	Framework	
Programme,	and	the	Consortium	Agreement	signed	by	partners.	

	

	

	

Founding Members
66	

4.4.3.3 Counts	of	the	flights	with	negative	differences	to	the	original	times	and	
durations	(i.e.,	decreases)	

EdgeBased:	

	

	

While	the	EdgeBased	method	increases	the	number	of	regulated	flights	compared	to	CFMU,	it	reduces	
delays	in	43	flights	that	were	regulated	by	CFMU	(48	for	AgentBased).	

CFMU:	

	

4.4.3.4 Average	negative	differences:	
EdgeBased:	

	

	

CFMU:	

	

4.4.4 Hierachical	flight	delay	statistics	
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4.4.4.1 Counts	of	the	flights	with	positive	differences	to	the	original	times	and	
durations	(i.e.,	increases)	

Hierachical:	

	

	

The	figures	show	that	there	are	607	flights	whose	starts	are	regulated	by	the	Hierachical	method	more	
than	by	CFMU,	and	there	are	603	flights	whose	ends	are	regulated	more	than	by	CFMU.	These	figures	
are	better	than	for	AgentBased	and	EdgeBased.	

CFMU:	

	

The	Hierachical	method	 introduces	delays	 in	a	 larger	number	of	 flights	than	CFMU	but	 in	a	smaller	
number	of	flights	than	AgentBased	and	EdgeBased.	

4.4.4.2 Average	positive	differences:	
Hierachical:	

	

	

	

CFMU:	
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4.4.4.3 Counts	of	the	flights	with	negative	differences	to	the	original	times	
Hierachical:	

	

	
While	the	Hierachical	method	increases	the	number	of	regulated	flights	compared	to	CFMU,	it	reduces	
delays	in	39	flights	that	were	regulated	by	CFMU	(48	for	AgentBased,	43	for	EdgeBased).	

CFMU:	

	

4.4.4.4 Average	negative	differences:	
Hierachical:	

	

	

CFMU:	

	

4.4.5 IndLearners	flight	delay	statistics	
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4.4.5.1 Counts	of	the	flights	with	positive	differences	to	the	original	times	and	
durations	(i.e.,	increases)	

IndLearners:	

	

	

The	figures	show	that	there	are	663	flights	whose	starts	are	regulated	by	the	IndLearners	method	more	
than	by	CFMU,	and	there	are	655	flights	whose	ends	are	regulated	more	than	by	CFMU.	These	figures	
are	very	close	to	AgentBased	and	EdgeBased	and	worse	than	for	Hierarchical.	

CFMU:	

	

The	IndLearners	method	introduces	delays	in	a	larger	number	of	flights	than	CFMU.	

4.4.5.2 Average	positive	differences:	
IndLearners:	

	

	

CFMU:	

	

4.4.5.3 Counts	of	the	flights	with	negative	differences	to	the	original	times	
IndLearners:	
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While	the	IndLearners	method	increases	the	number	of	regulated	flights	compared	to	CFMU,	it	reduces	
delays	 in	 42	 flights	 that	 were	 regulated	 by	 CFMU	 (48	 for	 AgentBased,	 43	 for	 EdgeBased,	 39	 for	
Hierarchical).	

CFMU:	

	

4.4.5.4 Average	negative	differences:	
IndLearners:	

	

	

CFMU:	

	

4.5 Comparison	between	the	four	methods	and	with	the	CFMU	

4.5.1 Counts	of	regulated	flights	

4.5.1.1 AgentBased:	

	

	

4.5.1.2 EdgeBased:	
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4.5.1.3 Hierachical:	

	

	

4.5.1.4 IndLearners:	

	

	

4.5.1.5 CFMU:	
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5 Conclusions	

	

The	results	reported	for	the	four	Collaborative	Reinforcement	Learning	methods	show	their	potential	
to	solve	effectively	the	DCB	problems	at	the	pre-tactical	stage,	assessing	the	delays	of	regulated	flights.	
Specifically:	

• They	manage	to	find	solutions	to	all	cases	–	i.e.	they	do	manage	to	regulate	flights	crossing	an	
operational	space	in	a	day	so	as	to	resolve	all	hotspots.		

• They	manage	to	find	solutions	effectively:	They	do	converge	to	solutions	quite	fast,	few	rounds	
after	exploration,	in	most	of	the	cases.	

• They	manage	to	reduce	the	average	delay	for	the	regulated	flights	considerably,	compared	to	
the	average	delay	for	the	regulated	flights	reported	by	CFMU.	The	same	holds	for	the	average	
delay	considering	all	flights.	

• The	Hierarchical	method,	has	the	potential	to	reduce	significantly	the	regulated	flights,	and	
thus	the	average	delay	for	all	 flights,	compared	to	the	other	methods	and	of	course	CFMU.	
However,	 in	 its	 current	 implementation	 is	 not	 that	 efficient,	 and	 the	 average	 delay	 to	 the	
regulated	flights	is	much	higher	than	that	reported	by	the	other	methods.	

All	methods,	across	the	different	evaluation	cases,	follow	the	same	patterns	for	regulations	prescribed	
and	 number	 of	 regulated	 flights:	 While	 the	 EdgeBased	 method	 manages	 to	 achieve	 a	 good	 and	
effective	balance	between	the	average	delay	to	regulated	flights	and	the	number	of	regulated	flights,	
the	 Hierarchical	 method	 manages	 to	 reduce	 significantly	 the	 number	 of	 regulated	 flights,	 while	
increasing	the	average	delay	to	these	flights.	We	need	to	delve	into	the	details	of	that	method	in	order	
to	 explore	 its	 potential	 to	 further	 reduce	 the	 average	 delay	 without	 increasing	 considerably	 the	
number	of	regulated	flights.	

A	major	issue	that	needs	to	be	explored	is	“what	constitutes	a	difficult	case”?	The	evaluation	cases	
characteristics	 shown	 in	 Table	 1,	 do	 not	 seem	 to	 provide	 an	 answer:	 Jul2,	 being	 the	 most	
computationally	demanding	among	the	cases	has	a	low	average	degree	per	flight,	few	hotspots	with	a	
low	number	 of	 interacting	 flights.	 However,	methods	 (as	well	 as	 CFMU)	 need	 to	 search	 deep	 into	
solutions	in	order	to	reach	one	that	resolved	the	DCB	problem	encountered.	

Finally,	all	methods	manage	to	incorporate,	as	one	of	their	inherent	features,	airlines	preferences	to	
the	delays	of	some	of	the	flights:	This	is	a	significant	issue,	showing	that	our	methods	can	contribute	
to	 prescribing	 solutions	 to	 DCB	 problems,	 taking	 into	 account	 stakeholders	 preferences	 and	
constraints.	

Visualizations	provide	a	comprehensive	way	to	summarize	results	in	space	and	time,	while	–	and	more	
importantly-	 they	provide	 to	a	 certain	degree	 justifications	of	 the	 “reasoning”	behind	decisions	on	
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regulations:	For	instance,	while	aggregated	results	on	average	delays	and	regulated	flights	show	the	
potential	of	the	methods,	delving	into	details	of	their	efficacy	requires	inspecting	the	spatio-temporal	
distribution	of	capacity	excess	events	and	their	intensity	(shown	in	Figures	14-19),	as	well	as	the	spatio-
temporal	 distribution	 of	 delays	 (shown	 in	 Figure	 24):	 These	 visualizations	 for	 instance	 provide	
justifications	on	the	need	for	increased	delays	for	the	north-western	Spain	at	the	end	of	the	day	for	
July	2,	 2016.	 These	 justifications	are	 further	backed	up	with	 the	evolution	of	demand	 for	 that	day	
(provided	in	Table	7,	row	“July	2”)	for	the	most	demanded	sector	(corresponding	to	the	one	indicated	
in	red	in	Figure	14).	These	visualizations	provide	firm	evidence	that		at	the	end	of	that	day,	that	sector	
had	large	demand	for	a	large	number	of	periods.	Nevertheless,	such	visualizations	provide	the	means	
to	compare	solutions	and	guide	human	decision	and/or	preferences	on	solutions	generated.	
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