

Data-driven Aircraft Trajectory Prediction

H. Georgiou, N. Pelekis, Y. Theodoridis, <u>G. A. Vouros</u> Univ. of Piraeus (UPRC), Greece

Data Enhanced TBO Workshop @ ICRAT 2018

DART Operational Context

Overall Aim:

Demonstrate how DART predictive analytics capability can improve trajectory prediction in support of DCB processes at planning phase, further reducing uncertainty and improving ATM operations and services provided.

Scenario 1 (AUs): aims to **compute the predicted trajectory** that an aircraft will fly during an operation day **without considering traffic**.

Scenario 2 (ANSPs): aims to study and determine the complexity to be considered in trajectories due to the influence of the surrounding traffic, at the planning phase, taking into account flight plans and/or individual trajectory predictions.

Single Trajectory Prediction

Objective: Given a flight plan, predict the actual trajectory, i.e., the 3-D route of the corresponding flight, w.r.t. to information that really matters local weather, aircraft type, ... Etc.

.... In a Data-Driven Way

.... Exploiting historical data on actual enriched trajectories

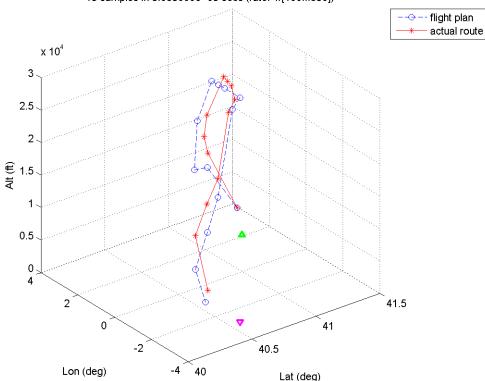
Single Trajectory Prediction

Objective: Given a Flight Plan, predict the actual trajectory, i.e., the 3-D route of the corresponding flights, w.r.t. to information that **really matters** local weather, aircraft type, ... Etc.

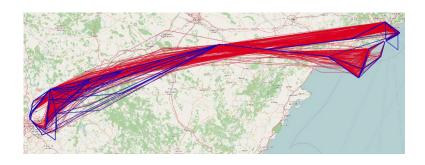
Predicted trajectories, in the context of DCB problems, can be used for predicting evolution of demand per sector, and thus hotspots.

Our case: Trajectories are predicted one by one, without considering traffic.

Flight (7573900): from LEBL (id:2248) to LEMD (is:2200) on 30-Apr-2016 06:45:56 13 samples in 3.083000e+03 secs (rate: 1/[100...630])

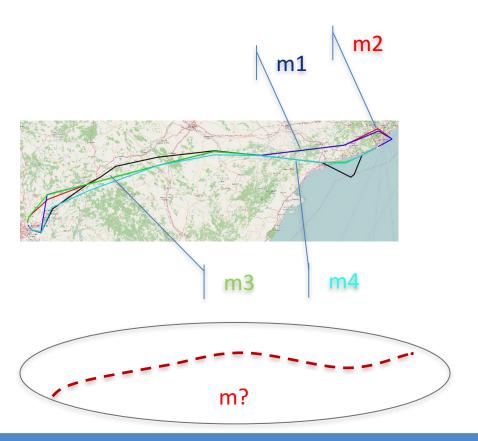


- 1. <u>Input</u>: Flight plans, actual routes, local weather, aircraft type, (...)
- 2. Stage-1: Cluster the actual enriched routes, producing medoids of clusters as "representatives"
- **3. Stage-2**: Build a **Pred.Model** for each cluster, associate it with the cluster flight plans (emissions)
- **4. Stage-3**: For a new flight plan, find the *k* closest matches (Pred.Model)
- 5. Output: $k \ge 1$ best-matches of the query FP, for prob.estim. or further refinement



- 1. <u>Input</u>: Flight plans, actual routes, local weather, aircraft type, (...)
- 2. Stage-1: Cluster the actual enriched routes, producing medoids of clusters as "representatives"
- **3. Stage-2**: Build a Pred.Model for each medoid, associate it with the cluster flight plans (emissions)
- **4. Stage-3**: For a new flight plan, find the *k* closest matches (Pred.Model)
- 5. Output: $k \ge 1$ best-matches of the query FP, for prob.estim. or further refinement

- 1. <u>Input</u>: Flight plans, actual routes, local weather, aircraft type, (...)
- 2. Stage-1: Cluster the actual enriched routes, producing medoids of clusters as "representatives"
- **3. Stage-2**: Build a Pred.Model for each medoid, associate it with the cluster (emissions: flight plans vs. medoid)
- **4. Stage-3**: (optional) For a new flight plan, find the *k* closest matches (Pred.Model)
- 5. Output: $k \ge 1$ best-matches of the query FP, for prob.estim. or further refinement



- 1. <u>Input</u>: Flight plans, actual routes, local weather, aircraft type, (...)
- 2. Stage-1: Cluster the actual enriched routes, producing medoids of clusters as "representatives"
- **3. Stage-2**: Build a Pred.Model for each medoid, associate it with the cluster flight plans (emissions)
- **4. Stage-3**: For a new flight plan, find the *k* closest matches (Pred.Model)
- 5. Output: $k \ge 1$ best-matches of the query FP, for estimation or further refinement

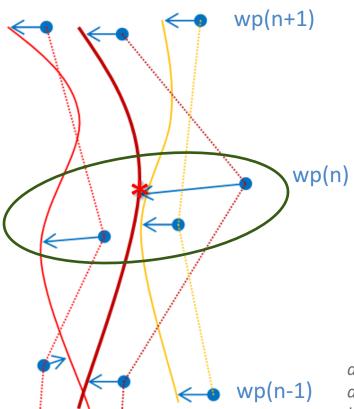


- 1. <u>Input</u>: Flight plans, actual routes, local weather, aircraft type, (...)
- 2. Stage-1: Cluster the actual enriched routes, producing medoids of clusters as "representatives"
- **3. Stage-2**: Build a Pred.Model for each medoid, associate it with the cluster flight plans (emissions)
- **4. Stage-3**: For a new flight plan, find the *k* closest matches (Pred.Model)
- 5. Output: $k \ge 1$ best-matches of the query FP, for estimation or further refinement

How to build predictive models (stage-2)

- Hidden Markov Model (HMM)
- Linear Regressor (LR)
- Decision Tree (CART)
- Support Vector Machine (RBF kernel)
- Gaussian Process (Sqr.Exp. kernel)
- Bagged Trees (ensemble)
- Neural Network (NN-MLP)
- Extreme Learning Machines (ELM)

Hybrid Clustering-Pred.Model (HMM)

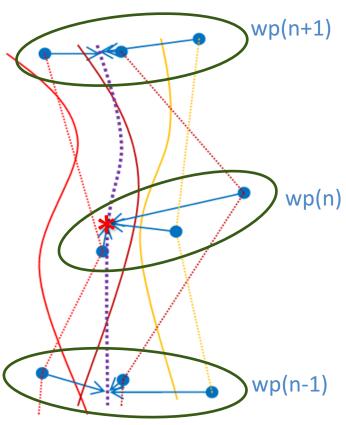


Stage-2, HMM approach:

RT(n)-FP(n) statistics are used to build a probabilistic model (HMM emissions) for ref. point wp(n).

dotted line: flight plan (FP), solid line: actual route (RT) arrows: FP/RT deviations, star: current pred. point (wp(n)) bold solid line: cluster medoid, pred. route for guery FP

Hybrid Clustering-Pred.Model (LR, CART, NN-MLP)



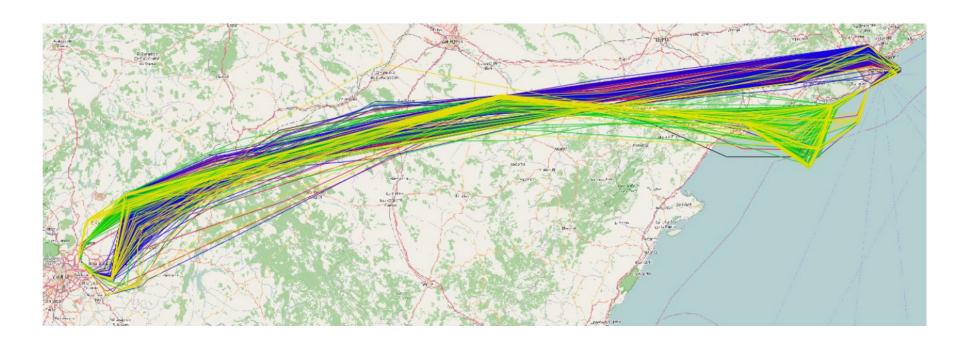
Stage-2, LR or CART or NN-MLP approach:

RT(n) is estimated as synthetic from multiple/all FP(*) ref. points, used to build a LSE-minimum linear prediction model.

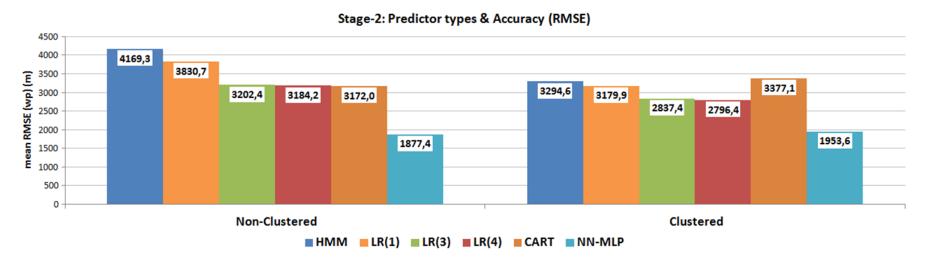
dotted line: flight plan (FP), solid line: actual route (RT) arrows: FP/RT deviations, star: current pred. point (wp(n)) bold solid line: cluster medoid, pred. route for query FP

12

Experimental dataset:Spain (Madrid-Barcelona), April 2016



TP Performance Summary: LEMD/LEBL, April 20



Example NN-MLP distribution of prediction errors (signed MAPE)(m) for Lat for one waypoint.

- > Flight plans provide optimization constraints, i.e., 'guidelines' for the TP training
- > They are also a realistic assumption about the intended (a priori) flight path
- > Per-waypoint TP accuracy is in the order of 2-3 km (3-D RMSE), length-invariant

Research Outcomes

- Multi-stage (hybrid) approach provides modularity & flexibility
- Stage-1: Clustering provides
 - a) improved **compactness** to the training subsets
 - b) Encapsulation of N-dim input ('enrichments'), before the actual TP
 - c) improved accuracy in the actual TP
- Stage-2: HMM provides max. expected errors with high confidence
- Stage-2: LR alternatives provide variable complexity vs. accuracy w.r.t. input dim.
- Stage-2: NN regressors (non-linear) provide maximum accuracy, at training cost
- Stage-2: CART (single) falls between LR and NN, but sensitive to noise & outliers

Gains & Insights

- Using flight plans as 'guidelines' provides four main advantages:
 - Scaling-down to smaller TP sequences, e.g. 11-18 instead of 680-730 points
 - Waypoint-based inherently parallelizable TP design
 - Length-invariant TP accuracy, along the flight plan 'intended' path
- > Prospects for real-world deployment:
 - ✓ **Predictive model is modular**, can be selected according to scale/resources
 - ✓ LR: Low-complexity, very fast re-training with
 - ✓ 2.8-3.5 km accuracy (3-D rmse)
 - ✓ NN-MLP: High-complexity, slower training
 - √ 1.8-2.0 km accuracy (3-D rmse)
 - ✓ ...But more complex pred. models can work single-stage (no clustering).

Data-driven Future Aircraft Trajectory Prediction H. Georgiou, N. Pelekis, Y. Theodoridis, G. Vouros Univ. of Piraeus (UPRC)

Thank you for your attention!

This project has received funding from the SESAR Joint Undertaking under the European Union's Horizon 2020 research and innovation programme under grant agreement No [number]

This work was partially supported by the projects datAcron (No:687591) and DART (No:699299), funded by the European Union's Horizon 2020 (H2020) programme.

http://datacron-project.eu http://dart-research.eu

