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DART Concept

Objectives
DART will deliver understanding on the suitability of applying data-driven and agent-based models for enhancing our
abilities to increase predictability of aircraft trajectories.

datACron @

Increasing predictability <-> Reducing uncertainty
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Motivation datAcCron @

= Flight Planning refers to the process of planning and optimizing a
flight strategically in accordance to the airline business model

— Optimization of fuel- and time-related costs

= Nowadays, this is a deterministic process based on the description
of different models (model-based approach):

— Aircraft Performance

— Weather Forecasts

— Airline Preferences (e.g., Cost Index)

— Operational Context

— Intended vertical and horizontal profiles

= Current approaches do not leverage historical data
— Planed optimized flight conditions are rarely reached

Is it possible to learn from the past to improve the planning of future flights?
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Single Trajectory Prediction

LEARNING FROM RAW DATA
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Single Trajectory Prediction

LEARNING FROM RECONSTRUCTED TRAJECTORIES
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Single Trajectory Prediction

LEARNING FROM AIRCRAFT INTENT
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Learning from data:
Enrichment Process

DATA ENRICHMENT PROCESS

— Weather Model: information regarding wind and atmosphere conditions
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— Aircraft Performance Model: basic aircraft information about drag,
thrust and fuel consumption

— Individual Flight Dataset: recorded data onboard or surveillance data

— Flight Plan Correlation: correlation of main features that represent the
flight and are linked to the flight data

— Reconstruction Process:

» La Civita, Marco. "Using aircraft trajectory data to infer aircraft intent."
U.S. Patent No. 8,977,484. 10 Mar. 2015.

* Luis, P. D., La Civita, M., Lopez, J., & Miguel, A. Vilaplana.
"Computer-implemented method and system for estimating impact of
new operational conditions in a baseline air traffic scenario." U.S.
Patent Application No. 15/155,754. 22 Dec. 2016.

— Enriched Flight Data Repository: collection of all enriched flight
dataset including additional state variables with a higher sample rate

Dataset Enrichment Process
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Trajectory Prediction from RAW Data SESAR »*
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Hidden Markov Models

Given a set of historical raw or reconstructed trajectories for specific aircraft types
along with pertinent historical weather observations, we aim at learning a model that
reveals the correlation between weather conditions and aircraft positions and predicts

trajectories in the form of a time series.
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States S = {S,,5;.....Sk} are represented by refer-
ence points’ coordinates (latitude, longitude, altifude)
that form saligned trajectories.

Transition probabilities A = {ay}, 1 <1.j < K, 1e.
ay; is the probability of an aircraft discretely tran-
sitioning from one state S; to another S; along its
aligned trajectory, T'.

Emission probabilities B = {l(0)}, 1 < i < K is the
probability of discrete weather parameters having been
observed at a specific state, S;.

Initial probabilities # = {=¢}, 1 <1 < K is the prob-
ability of an aligned trajectory beginning at a specific
state, Sy.

Construct spatio-
Perform grid- Compute HMM
Raw trajectory temporal data Perform Viterbi
database (3D) based alignment cubes (4D) PR
\v/
/-+ N
et P paramtors pr | —of GFeToTn Tine ot
database grid point - 9 Trajectory
\\_—d_’./

Data-Enhanced Trajectory Based Operations Wo




Trajectory Prediction from RAW

Data: Hidden Markov Models. dotACron @

Results from Raw trajectory data based algorithms
Hidden Markov Models & Gradient Boost Machine Regression

TestCase# Route _ Tra.iningSetSizc' chtSelSi:c | Route Tra.iningSrlSi:c . chlSﬁSi:t
Etrjs pts trjs | #pis #rjs pts 2trjs | #pis
1 | LEAL-LEBL | 1118 55116 | 200 | 9860 | LEMD-LEIB 2572 125623 | 200 | 9769
2 | LEAL-LEBL | 1118 55116 | 19 | 937 | LEMD-LEMH 1056 68141 | 19 | 1226
3 | LEAL-LEBL | 1118 55116 | 152 | 7493 | LEPA-LEMD 5116 306128 | 152 | 9095
4 | LEBL-LEMG | 1704 127451 | 43 | 3216 | LEMD-LEMH 1056 68141 | 43 | 2775
5 "LEBL-LEMG | 1704 127451 | 180 | 13463 | LEPA-LEMD 5116 306128 | 180 | 10771
6 | LEBL-LEZL | 2404 183343 | 41 | 3127 | LEMD-LEAM 1434 70128 | 41 | 2005
7 | LEBL-LEZL | 2404 183343 | 46 | 3508 | LEMD-LEMH 1056 68141 | 46 | 2968
8 | "LEBL-LEZL | 2404 183343 | 164 | 12508 | LEMG-LEMD 1403 75408 | 164 | 8815
9 | LEBL-LEZL | 2404 183343 | 210 | 16016 | LEPA-LEMD 5116 306128 | 210 | 12566 The mean Value for the
10 | LEIB-LEBL | 1360 53443 | 259 | 10178 | LEPA-LEMD 5116 306128 | 259 | 15498
11 | LEIB-LEBL | 1360 53443 | 158 | 6209 | LEPA-LEVC 1426 50467 | 158 | 5592 CrOSS-traCk error and
12 | LEMG-LEBL | 1563 114767 | 38 | 2790  LEMD-LEAM 1434 70128 | 38 | 1858 .
13 LEMG-LEBL | 1563 114767 | 46 | 3378 | LEMD-LEIB 2572 125623 | 46 | 2247 Vertlcal error al()ng the
14 | 'LEZL-LEBL | 2380 186299 | 40 | 3131 | LEMD-LEIB 2572 125623 | 40 | 1954
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Trajectory Prediction from RAW
Data: Hidden Markov Models.
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Results from Raw trajectory data based algorithms
ETA comparison with EUROCONTROL on flight departure

Compare data driven and model based generated

trajectories

Actions:

- Get from Eurocontrol DDR2 database 2016 and
2017 predicted trajectory data (CTFM, FTFM,
RTFM)

- Extract model based CTFM trajectories
(predictions) from the dataset

- Perform ETA and trajectory comparison
between CFTM trajectories and HMM
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1. Our prediction yields 9% better median
scores on eight routes, while the
Eurocontrol’s ETA shows better median
scores on two routes (LEBL-LEVX and
LEBL-LEZL).

2. The standard deviation values in
Eurocontrol’s ETAs are much larger,
resulting in larger windows of
predictability at arrival times.

3. Boxplots representing Eurocontrols’s
ETAs show extreme outliers.




Hybrid Data-Driven Flight Planning
Architecture: using Aircraft Intent

Flight Planning Tool Overall Approach
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Hybrid Data-Driven Flight

A
Planning Architecture ceracron (©)

DATA-DRIVEN PROCESS

= Clusters Identification & Characterization

— Tabular Aircraft Intent Description Identification: variations of pressure
altitude (Hp), Mach Number (M) and aerodynamic bearing (Xtas)

— Time Warping: normalization of time duration of all flights to the interval
[0,1]

— Horizontal Profile Clustering: flights are grouped according to Xxg
« Computation of the centroid that characterizes each cluster
— Vertical Profile Clustering: flights are grouped according to Hp and M
« Computation of the centroid that characterizes each cluster
= Classification & Selection

— Flight Classification: based on Flight Planning Features

— Flight Profiles Selection: selection of centroids that define the flight
according to the input FP.

WIND at Origin and Destination, Cruise WIND & TEMP, Day of the Week, Cruise FL, Wake Vortex Category
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Hybrid Data-Driven Flight Planning

datACron
Architecture > @

Classification & Selection

= Selection of most likely centroid according to the Flight Planning features

— Random Forest (RF), algorithm that grows many classification trees. Each generated tree
gives a classification for a new input, while the forest (i.e., the ensemble of all trees) provides
an overall classification weighing the outcomes of all individual trees.

It runs efficiently on large data bases.

It can handle thousands of input variables without variable deletion.

It gives estimates of what variables are important in the classification.

It generates an internal unbiased estimate of the generalization error as the forest building progresses.

= The centroids determined the lateral and vertical flight profiles by described
the time evolution of M, Hp & X;,s:

— It ensures that a model-based approach can be used afterwards to compute a nominal
flight once a weather forecast is available and there is a description of the aircraft
performance.

RF is fast and is not prone to overfit
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Case Study

= Objective:

— Planning a flight departing form LEBL and arriving to LEMD making use
of the proposed hybrid planning approach

= Historical Recorded data:
— 1/2-year of surveillance data (fused radar tracks) 3,356 flights
— 1/2-year of Flight Plans (correlated to surveillance data)
— 1/2-year of weather models (downloaded from NOAA)

= Results:
— Comparison with the Planned Flight
— Comparison with the actually flown Flight

Case Study Description
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Cluster Visualization
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Case Study - Results:
Lateral Profile

41.6
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Longitude vs. Latitude
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Potential improvements in the lateral profile
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Case Study - Results: Vertical
Profile

45 x10° Pressure Altitude vs. Time
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1. Use of centroids 2. Features engineering 3. Explore other ML algorithms

Improved ~10% RMS,;; & ~50% RMS,

Data-Enhanced Trajectory Based Operations Workshop



Remarks & Future Work

= An hybrid flight planning architecture has been implemented
— It leverages historical data

— It make use of models to improve pure data-driven Flight Planning
— It ensures that hidden patterns are considered during Flight Planning

datACron @

= Required an extended analysis with higher number of trajectories
(i.e., extended learning dataset)

= Some potential improvements have been identified:
— Clustering Process
 Principal Component Analysis (PCA)
* Robust K-Means Clustering
— Classification methods
» Boosted Trees (e.g., XGBoost)
— Features engineering
— Flights segmentation

What improvements can be achieved in the future?

Data-Enhanced Trajectory Based Operations Workshop



@ﬂafl,va

Copyright © 2018 Boeing. All rights reserved.



