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Objectives 
DART will deliver understanding on the suitability of applying data-driven and agent-based  models for enhancing our 
abilities to increase predictability of aircraft trajectories.  

Increasing predictability <-> Reducing uncertainty
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▪ Flight Planning refers to the process of planning and optimizing a 
flight strategically in accordance to the airline business model  

– Optimization of fuel- and time-related costs 

▪ Nowadays, this is a deterministic process based on the description 
of different models (model-based approach):  

– Aircraft Performance 
– Weather Forecasts 
– Airline Preferences (e.g., Cost Index) 
– Operational Context 
– Intended vertical and horizontal profiles 

▪ Current approaches do not leverage historical data 
– Planed optimized flight  conditions are rarely reached 

Is it possible to learn from the past to improve the planning of future flights?

Motivation
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t = 797 s 

Single Trajectory Prediction  
LEARNING FROM RAW DATA
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λ = -2.06º 
φ = 41.08º 
h = 2,737m 
t = 797 s 
M = 0.59 
CAS = 229 mps 
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Single Trajectory Prediction  
LEARNING FROM RECONSTRUCTED TRAJECTORIES
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Single Trajectory Prediction  
LEARNING FROM AIRCRAFT INTENT
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Learning from data: 
Enrichment Process
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Dataset Enrichment Process

DATA ENRICHMENT PROCESS 
– Weather Model: information regarding wind and atmosphere conditions 
– Aircraft Performance Model: basic aircraft information about drag, 

thrust and fuel consumption 
– Individual Flight Dataset: recorded data onboard or surveillance data 
– Flight Plan Correlation: correlation of main features that represent the 

flight and are linked to the flight data 
– Reconstruction Process: 

• La Civita, Marco. "Using aircraft trajectory data to infer aircraft intent." 
U.S. Patent No. 8,977,484. 10 Mar. 2015. 

• Luis, P. D., La Civita, M., Lopez, J., & Miguel, A. Vilaplana. 
"Computer-implemented method and system for estimating impact of 
new operational conditions in a baseline air traffic scenario." U.S. 
Patent Application No. 15/155,754. 22 Dec. 2016. 

– Enriched Flight Data Repository: collection of all enriched flight 
dataset including additional state variables with a higher sample rate
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Trajectory Prediction from RAW Data 
Hidden Markov Models

Given a set of historical raw or reconstructed trajectories for specific aircraft types 
along with pertinent historical weather observations, we aim at learning a model that 
reveals the correlation between weather conditions and aircraft positions and predicts 
trajectories in the form of a time series.

Data-Enhanced Trajectory Based Operations Workshop
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Results from Raw trajectory data based algorithms
Hidden Markov Models & Gradient Boost Machine Regression

The mean value for the 
cross-track error and 
vertical error along the 
entire test trajectories 
in all 14 route pairs is 
7.692nmi and 
1589.452ft 

Data-Enhanced Trajectory Based Operations Workshop

Trajectory Prediction from RAW 
Data: Hidden Markov Models. 
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Results from Raw trajectory data based algorithms
ETA comparison with EUROCONTROL on flight departure

1. Our prediction yields 9% better median 
scores on eight routes, while the 
Eurocontrol’s ETA shows better median 
scores on two routes (LEBL-LEVX and 
LEBL-LEZL). 

2. The standard deviation values in 
Eurocontrol’s ETAs are much larger, 
re su l t i ng i n l a rge r w indows o f 
predictability at arrival times. 

3. Boxplots representing Eurocontrols’s 
ETAs show extreme outliers. 

Compare data driven and model based generated 
trajectories 
Actions: 
- Get from Eurocontrol DDR2 database 2016 and 

2017 predicted trajectory data (CTFM, FTFM, 
RTFM) 

- Extract model based CTFM trajectories 
(predictions) from the dataset 

- Perform ETA and trajectory comparison 
between CFTM trajectories and HMM

Data-Enhanced Trajectory Based Operations Workshop

Trajectory Prediction from RAW 
Data: Hidden Markov Models. 



CLASSIFICATION & SELECTION

CLUSTERS IDENTIFICATION & CHARACTERIZATION
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Hybrid Data-Driven Flight Planning  
Architecture: using Aircraft Intent
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Flight Planning Tool Overall Approach
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DATA-DRIVEN PROCESS 
▪ Clusters Identification & Characterization 

– Tabular Aircraft Intent Description Identification: variations of pressure 
altitude (Hp), Mach Number (M) and aerodynamic bearing (ΧTAS) 

– Time Warping: normalization of time duration of all flights to the interval 
[0,1] 

– Horizontal Profile Clustering: flights are grouped according to ΧTAS 
• Computation of the centroid that characterizes each cluster 

– Vertical Profile Clustering: flights are grouped according to Hp and M 
• Computation of the centroid that characterizes each cluster 

▪ Classification & Selection 
– Flight Classification: based on Flight Planning Features 
– Flight Profiles Selection: selection of centroids that define the flight 

according to the input FP.

Hybrid Data-Driven Flight 
Planning Architecture
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WIND at Origin and Destination, Cruise WIND & TEMP, Day of the Week, Cruise FL, Wake Vortex Category
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Hybrid Data-Driven Flight Planning 
Architecture  
 
Classification & Selection
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RF is fast and is not prone to overfit

▪ Selection of most likely centroid according to the Flight Planning features 

– Random Forest (RF), algorithm that  grows many classification trees. Each generated tree 
gives a classification for a new input, while the forest (i.e., the ensemble of all trees) provides 
an overall classification weighing the outcomes of all individual trees.  

• It runs efficiently on large data bases. 
• It can handle thousands of input variables without variable deletion. 
• It gives estimates of what variables are important in the classification. 
• It generates an internal unbiased estimate of the generalization error as the forest building progresses. 

▪ The centroids determined the lateral and vertical flight profiles by described 
the time evolution of M, Hp & ΧTAS :  

– It ensures that a model-based approach can be used afterwards to compute a nominal 
flight once a weather forecast is available and there is a description of the aircraft 
performance.

Data-Enhanced Trajectory Based Operations Workshop



Case Study
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Case Study Description 

▪ Objective:  
– Planning a flight departing form LEBL and arriving to LEMD making use 

of the proposed hybrid planning approach 

▪ Historical Recorded data: 
– 1/2-year of surveillance data (fused radar tracks) 3,356 flights 
– 1/2-year of Flight Plans (correlated to surveillance data)  
– 1/2-year of weather models (downloaded from NOAA) 

▪ Results:  
– Comparison with the Planned Flight 
– Comparison with the actually flown Flight

Data-Enhanced Trajectory Based Operations Workshop



Case Study - Clustering
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Cluster Visualization

Data-Enhanced Trajectory Based Operations Workshop



Case Study – Results: 
Lateral Profile
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Bad news 

Good news 

1. Increase learning dataset 
2. Review clustering 

process 
3. Features engineering

Potential improvements in the lateral profile

Data-Enhanced Trajectory Based Operations Workshop



Case Study – Results: Vertical 
Profile
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Improved ~10% RMSHp & ~50% RMSVg

Bad news 

1. Use of centroids

Bad news Good news Good news Bad news 

2. Features engineering 3. Explore other ML algorithms 

Data-Enhanced Trajectory Based Operations Workshop



Remarks & Future Work
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What improvements can be achieved in the future?

▪ An hybrid flight planning architecture has been implemented  
– It leverages historical data 
– It make use of models to improve pure data-driven Flight Planning 
– It ensures that hidden patterns are considered during Flight Planning 

▪ Required an extended analysis with higher number of trajectories 
(i.e., extended learning dataset) 

▪ Some potential improvements have been identified: 
– Clustering Process  

• Principal Component Analysis (PCA) 
• Robust K-Means Clustering 

– Classification methods 
• Boosted Trees (e.g., XGBoost) 

– Features engineering 
– Flights segmentation

Data-Enhanced Trajectory Based Operations Workshop
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