

Trajectory based analytics: A Maritime Situational Awareness Perspective

Elena Camossi², Clément Iphar², Anne-Laure Jousselme², Cyril Ray³, Maximilian Zocholl² (²CMRE, ³NARI)

Centre for Maritime Research and Experimentation

STO CMRE conducts scientific research and technology development and delivers field-tested S&T solutions to address the defense and security needs of the Alliance in the maritime domain

The Data Knowledge and Operational Effectiveness (**DKOE**) project deals with Maritime Security and Maritime Situational Awareness

Similarities in Situational Awareness

Aviation Situational Awareness

https://en.wikipedia.org/wiki/Air_traffic_control

Maritime Situational Awareness

https://pla.co.uk/Safety/Vessel-Traffic-Services-VTS-/About-London-VTS

Situational Awareness

Functional model from:

Endsley, M.R. (2000). Theoretical underpinnings of situation awareness: A critical review. In M.R. Endsley & D.J. Garland (Eds.), Situation awareness analysis and measurement. Mahwah, NJ: LEA.

Endsley, M.R. (1995a). "Measurement of situation awareness in dynamic systems". Human Factors. **37** (1): 65–84.

The JDL (Joint Director Laboratory) fusion model

Fusion model from: Steinberg, Alan & L Bowman, Christopher. (2004). Rethinking the JDL data fusion levels.

Data

- Terrestrial and Satellite Automatic Identification System (T-AIS and S-AIS)
- Long Range Identification and Tracking System (LRIT)
- VTS costal Radar, HF radar, Shipborne and Airborne radar
- Synthetic Aperture Radar (SAR) and Inverse Synthetic Aperture Radar (ISAR) Imagery
- Vessel Management System (VMS) for fishing vessels
- Global Maritime Distress and Safety System (GMDSS)
- EO and Remote sensing Imagery
- Visible light and infrared cameras
- Meteorological and oceanographic models and Observations (e.g., Gliders sensors, CTDs, Waveriders, Wavegliders, XBTs, Meteo Buoys)
- Acoustic data (e.g., PAS/CAS Sonar, Hydrophones)
- Optic data (e.g., LIDAR imagery)
- Contextual information (maritime regulations and charts, traffic separation schemes, protected or closed areas, anchoring areas, activity reports, registry data vessels and ports, black lists)

Benefits and limitations of approaches

- A->B
- Inductive (A B, ->)
 - Implies data compression, thus
 - Compression can imply information loss
 - Requires the knowledge of the purpose of use
- Deduction (A->, B)
 - Good for event detection.
 - But if a conclusion is compelling (e.g. collision), it is too late to avoid it
- Abduction (->B, A)
 - Different possible interpretations which might not be comprehensive, thus combine approaches:
 - Probabilistic
 - Possibilistic

Inductive route extraction

AIS raw data

Clustered trajectories

Synthetic routes

Providing interpretation context for enriching machine learning algorithms with meaning

Pictures from: Pallotta G., Vespe M., Bryan K. (2013) "Vessel Pattern Knowledge Discovery from AIS Data: a Framework for Anomaly Detection and Route Prediction". *Entropy, Big Data Issue* 15(6), pp. 2218-2245. ISSN 1099-4300

Deductive pattern detection

Trawling pattern detection


```
holdsFor(trawling(Vessel) = true, I) ←
vesselType(Vessel, fishing),
holdsFor(trawlSpeed(Vessel) = true, It),
holdsFor(withinArea(Vessel) = fishing, Iw),
intersect_all([It, Iw], Ii),
intDurGreater (Ii, Ttr, I).
```

Enabling the combination of observed data with prior knowledge.

Picture and Rule from: Manolis Pitsikalis, Ioannis Kontopoulos, Alexander Artikis, Elias Alevizos, Paul Delaunay, Jules-Edouard Pouessel, Richard Dreo, Cyril Ray, Elena Camossi, Anne-Laure Jousselme, Melita Hadzagic, Composite Event Patterns for Maritime Monitoring, 10th Hellenic Conference on Artificial Intelligence (SETN 2018), July 2018

Abductive destination prediction

 Combining inductively generated information for proposing possible interpretations of the observations and predictions.

Pictures from: Pallotta G., Vespe M., Bryan K. (2013) "Vessel Pattern Knowledge Discovery from AIS Data: a Framework for Anomaly Detection and Route Prediction". *Entropy, Big Data Issue* 15(6), pp. 2218-2245. ISSN 1099-4300

Thank you for your attention