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About meAbout me
Aeronautical Engineer specialized in Orbital Mechanics 🛰
Founder and president of the Python España non pro�t, as well as co-organizer
of PyConES����������������

Next edition in Málaga, tickets selling out soon

Software Engineer at the geospatial infrastructure team in Satellogic���
Freelancer for R&D projects
Open Source advocate and specially about Python for scienti�c computing
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1. Introduction1. Introduction
Python for Data SciencePython for Data Science

Python is a dynamic, relatively easy to learn, general purpose language
There is a vast ecosystem of commercial-friendly, open source libraries around
it
Growth in the latest years mainly due to adoption in Data Science













LimitationsLimitations
All Python libraries were designed for in-memory computing
On their own, they don't work well with bigger-than-RAM datasets
Apart from embarrasingly parallel problems, we need other solutions



Current mature tool: PySparkCurrent mature tool: PySpark
Python API for Spark, a complete distributed computing framework written in
Scala (Java derivative)
Pros: Rich ecosystem, good integration with Big Data technologies (Hadoop,
Hive)
Cons: Python to/from Java serialization is slow and fragile, dif�cult to debug



2. Dask2. Dask

Dynamic task scheduling optimized for interactive computation1. 
"Big Data" collections like parallel arrays, dataframes, and lists that extend
common interfaces like NumPy, Pandas, or Python iterators to larger-than-
memory or distributed environments

2. 

"Dask provides advanced parallelism for analytics, enabling
performance at scale for the tools that you love"



Dask emphasizes the following virtues:

Familiar: Provides parallelized NumPy array and Pandas DataFrame objects
Flexible: Provides a task scheduling interface for more custom workloads and
integration with other projects
Native: Enables distributed computing in Pure Python with access to the PyData
stack
Fast: Operates with low overhead, low latency, and minimal serialization
necessary for fast numerical algorithms
Scales up and down: Runs resiliently on clusters with 1000s of cores or a laptop
in a single process
Responsive: Designed with interactive computing in mind it provides rapid
feedback and diagnostics to aid humans



In [1]: from distributed import Client, progress

client = Client()
client

Out[1]: ClientClient
Scheduler: tcp://127.0.0.1:32941
Dashboard: 

ClusterCluster
Workers: 4
Cores: 4
Memory: 8.27 GB

http://127.0.0.1:8787/status (http://127.0.0.1:8787/status)



In [2]: import numpy as np
import dask.array as da

x = np.arange(1000)
y = da.from_array(x, chunks=100)

In [3]: y

In [4]: op = y.mean()
op

Out[3]: dask.array<array, shape=(1000,), dtype=int64, chunksize=(100,)>

Out[4]: dask.array<mean_agg-aggregate, shape=(), dtype=float64, chunksize=()>



In [5]: op.visualize()

Out[5]:



In [6]: op.compute()

Out[6]: 499.5



In [7]: import dask.dataframe as dd

df = dd.read_csv("data/yellow_tripdata_*.csv", parse_dates=['tpep_pickup_datetime',
'tpep_dropoff_datetime'])



In [8]: df.head()

Out[8]:
VendorID tpep_pickup_datetime tpep_dropoff_datetime passenger_count trip_distance pickup_longitude pickup_latitude RateCodeID

0 2 2015-01-15 19:05:39 2015-01-15 19:23:42 1 1.59 -73.993896 40.750111 1

1 1 2015-01-10 20:33:38 2015-01-10 20:53:28 1 3.30 -74.001648 40.724243 1

2 1 2015-01-10 20:33:38 2015-01-10 20:43:41 1 1.80 -73.963341 40.802788 1

3 1 2015-01-10 20:33:39 2015-01-10 20:35:31 1 0.50 -74.009087 40.713818 1

4 1 2015-01-10 20:33:39 2015-01-10 20:52:58 1 3.00 -73.971176 40.762428 1



In [9]: len(df)

Out[9]: 12748986



3. Application to trajectory prediction3. Application to trajectory prediction
Problem settingProblem setting

Complete air traf�c data in Spain resampled to 1 second from January to May
2016
44264 CSV �les, ~98 GiB of data
In each �le, we have time histories of geometric, aerodynamic and atmospheric
variables

Objective: "Explore machine learning algorithms to predict the trajectories"

Requirement: Preserve the con�dentiality of the data - i.e. don't use cloud resources



Analyzing 100 GiB of data in a 8 GiB RAM laptop? Challenge accepted!

To preserve the con�dentiality of the data, the analysis was done on a laptop:
Linux Mint 18.2 64-bit, kernel 4.10.0-35-generic
Intel Core™ i5-6200U CPU @ 2.30 GHz x 2 (4 cores)
~8 GiB of RAM

We focused on a subset of the data (only LEMD ✈ LEBL trajectories)
To avoid reading all the CSV �les every time, we �rst built an index of �les in
Apache Parquet format

This only contained name of the �le and pair of cities



Exploratory analysisExploratory analysis
Normalizing with respect to time seems the most natural option
However, spatial normalization appears to give less dispersion
A monotonically increasing variable has to be chosen: imperfect solution



CorrelationsCorrelations
Many variables are strongly correlated, so they could be discarded for the analysis



ModelModel
We tried a simple approach based on computing aggregated variables for each
�ight
The target variables were the 3D position, time and distance at an speci�c % of
the total duration
We used RandomForestRegressor and
MultiOutputRegressor(RandomForestRegressor) from scikit-learn
Pros: We only need to compute the aggregated variables once per �ight
Cons: Time history information is lost

\ Predictors (whole �ight) \ Target variables (x %)

\ duration_max, T_mean, p_mean, ..., wkday_Sat \ , , duration, distance, H_p

Flight 1 \ ... \ ...

Flight 2 \ ... \ ...

... \ ... \ ...

Flight N \ ... \ ...

λ φ



ProcessProcess
We �rst computed the aggregated variables
Both models were trained independently for each time fraction



Variables importanceVariables importance
Using the Random Forest algorithm, the importance of the variables for the
prediction was obtained
Most important variables were maximum duration and distance, mean
temperature and minimum mass
We kept the categorical variables for the prediction as well



ResultsResults
The accuracy was better in the central phase of the �ight (R^2 ~ 0.9) and worse in take-
off and landing (R^2 ~ 0.7)



4. Future work4. Future work
Deeper exploratory analysis and feature engineering
Scale to a cluster for better performance, more models
Automate the processing
Dask-ML for training



5. Final thoughts5. Final thoughts
Traditional Python libraries are not ready to scale horizontally
Dask enables an interactive, familiar work�ow easy to scale from a laptop to a
cluster
This simple model could use the result of a clustering to do the prediction
Interactive visualization and exploration analysis is crucial



Questions?Questions?
https://github.com/Juanlu001 (https://github.com/Juanlu001)
hello@juanlu.space (mailto:hello@juanlu.space)


