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About me

e Aeronautical Engineer specialized in Orbital Mechanics
e Founder and president of the Python Espana non profit, as well as co-organizer
of PyConES .=
m Next edition in Malaga, tickets selling out soon
https://2018.es.pycon.org/ (https://2018.es.pycon.or
e Software Engineer at the geospatial infrastructure team in Satellogic €&
e Freelancer for R&D projects
e Open Source advocate and specially about Python for scientific computing







1. Introduction

Python for Data Science

e Python is adynamic, relatively easy to learn, general purpose language

e There s a vast ecosystem of commercial-friendly, open source libraries around
it

e Growthinthe latest years mainly due to adoption in Data Science



Growth of major programming languages
Based on Stack Overflow question views in World Bank high-income countries
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Stack Overflow Traffic to Questions About Selected Python Packages

Based on visits to Stack Overflow questions from World Bank high-income countries
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Limitations

e All Python libraries were designed for in-memory computing
e Ontheir own, they don't work well with bigger-than-RAM datasets
e Apart from embarrasingly parallel problems, we need other solutions



Current mature tool: PySpark

e Python API for Spark, a complete distributed computing framework written in

Scala (Java derivative)
e Pros: Rich ecosystem, good integration with Big Data technologies (Hadoop,

Hive)
e Cons: Python to/from Java serialization is slow and fragile, difficult to debug

@ python™ + Spofll(\z



2. Dask

"Dask provides advanced parallelism for analytics, enabling
performance at scale for the tools that you love"

/7// DASK

1. Dynamic task scheduling optimized for interactive computation

2."Big Data" collections like parallel arrays, dataframes, and lists that extend
common interfaces like NumPy, Pandas, or Python iterators to larger-than-
memory or distributed environments



Dask emphasizes the following virtues:

e Familiar: Provides parallelized NumPy array and Pandas DataFrame objects

e Flexible: Provides a task scheduling interface for more custom workloads and
integration with other projects

e Native: Enables distributed computing in Pure Python with access to the PyData
stack

e Fast: Operates with low overhead, low latency, and minimal serialization
necessary for fast numerical algorithms

e Scales up and down: Runs resiliently on clusters with 1000s of cores or a laptop
in a single process

e Responsive: Designed with interactive computing in mind it provides rapid
feedback and diagnostics to aid humans
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In [1]: from distributed import Client, progress

client = Client()

client
Out[1l]:
Client Cluster
e Scheduler: tcp://127.0.0.1:32941 e Workers: 4
e Dashboard: http://127.0.0.1:8787/status (http://127.0.0.1:8787/status) e Cores: 4

e Memory: 8.27 GB



In [2]:

In [3]:

Out[3]:

In [4]:

Out[4]:

import numpy as np
import dask.array as da

X = np.arange(1000)
y = da.from array(x, chunks=100)
y

dask.array<array, shape=(1000,), dtype=int64, chunksize=(100,)>

op = y.mean()
op

dask.array<mean agg-aggregate, shape=(), dtype=float64, chunksize=()>



In [5]: op.visualize()

Out[5]:
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In [6]: op.compute()

Qut[6]: 499.5



In [7]: import dask.dataframe as dd

df = dd.read csv("data/yellow tripdata *.csv", parse dates=['tpep pickup datetime"',
"tpep dropoff datetime'])



In [8]: df.head()

Out [8] : VendorID tpep_pickup_datetime tpep_dropoff_datetime passenger_count trip_distance pickup_longitude pickup_latitude RateCode
0 2 2015-01-1519:05:39  2015-01-1519:23:42 1 1.59 -73.993896 40.750111 1
11 2015-01-1020:33:38  2015-01-1020:53:28 1 3.30 -74.001648 40.724243 1
2 1 2015-01-1020:33:38  2015-01-1020:43:41 1 1.80 -73.963341 40.802788 1
31 2015-01-1020:33:39  2015-01-1020:35:31 1 0.50 -74.009087 40.713818 1
4 1 2015-01-1020:33:39  2015-01-1020:52:58 1 3.00 -73.971176 40.762428 1



In [9]: T1len(df)

Qut[9]: 12748986
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3. Application to trajectory prediction

Problem setting

e Complete air traffic data in Spain resampled to 1 second from January to May
2016

e 44264 CSV files, ~98 GiB of data

e |n each file, we have time histories of geometric, aerodynamic and atmospheric

variables
Objective: "Explore machine learning algorithms to predict the trajectories"

Requirement: Preserve the confidentiality of the data - i.e. don't use cloud resources



Analyzing 100 GiB of datain a 8 GiB RAM laptop? Challenge accepted!

e To preserve the confidentiality of the data, the analysis was done on a laptop:
m Linux Mint 18.2 64-bit, kernel 4.10.0-35-generic
m Intel Core™ i5-6200U CPU @ 2.30 GHz x 2 (4 cores)
m ~8 GiB of RAM
e We focused on a subset of the data (only LEMD *» LEBL trajectories)
e To avoid reading all the CSV files every time, we first built an index of files in
Apache Parquet format
m This only contained name of the file and pair of cities



Exploratory analysis

e Normalizing with respect to time seems the most natural option
e However, spatial normalization appears to give less dispersion
e A monotonically increasing variable has to be chosen: imperfect solution

LEMD - LEBL Trajectories
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Correlations

Many variables are strongly correlated, so they could be discarded for the analysis

DeltaT -
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Model

e We tried a simple approach based on computing aggregated variables for each
flight

e The target variables were the 3D position, time and distance at an specific % of
the total duration

e We used RandomForestRegressorand
MultiOutputRegressor(RandomForestRegressor) from scikit-learn

® Pros: We only need to compute the aggregated variables once per flight

e Cons: Time history information is lost

\ Predictors (whole flight) \ Target variables (x %)

\ duration_max, T_mean, p_mean, .., wkday_Sat \ A, ¢, duration, distance, H_p
Flight 1 \ \
Flight2 \ \

\ \
Flight N\ \



Process

e We first computed the aggregated variables
e Both models were trained independently for each time fraction
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Variables importance

e Using the Random Forest algorithm, the importance of the variables for the
prediction was obtained

e Most important variables were maximum duration and distance, mean
temperature and minimum mass

e We kept the categorical variables for the prediction as well

Importance of variables
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Results

The accuracy was better in the central phase of the flight (R*2 ~ 0.9) and worse in take-
off and landing (R*2 ~ 0.7)
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4. Future work

Deeper exploratory analysis and feature engineering
Scale to a cluster for better performance, more models
Automate the processing

Dask-ML for training



9. Final thoughts

e Traditional Python libraries are not ready to scale horizontally

e Dask enables an interactive, familiar workflow easy to scale from a laptop to a
cluster

e This simple model could use the result of a clustering to do the prediction

e |nteractive visualization and exploration analysis is crucial



Questions?
e https://github.com/Juanlu001 (https://github.com/Juanlu001)

e hello@juanlu.space (mailto:hello@juanlu.space)




