Python Big Data Analytics with Dask

Juan Luis Cano Rodríguez <u>hello@juanlu.space</u> (mailto:hello@juanlu.space)

Data-Enhanced Trajectory Based Operations Workshop @ ICRAT, 2018-06-25

LEMD - LEBL Trajectories

Outline

- 1. Introduction
- 2. Dask
- 3. Application to Trajectory Prediction
- 4. Future work
- 5. Conclusions

About me

- Aeronautical Engineer specialized in Orbital Mechanics *
- Founder and president of the Python España non profit, as well as co-organizer of PyConES
 - Next edition in Málaga, tickets selling out soon https://2018.es.pycon.org/ (https://2018.es.pycon.org/)
- Software Engineer at the geospatial infrastructure team in Satellogic 🌕
- **Freelancer** for R&D projects
- Open Source advocate and specially about Python for scientific computing

1. Introduction

Python for Data Science

- Python is a dynamic, relatively easy to learn, general purpose language
- There is a vast ecosystem of **commercial-friendly**, **open source libraries** around it
- Growth in the latest years mainly due to adoption in **Data Science**

Growth of major programming languages

Based on Stack Overflow question views in World Bank high-income countries

Stack Overflow Traffic to Questions About Selected Python Packages Based on visits to Stack Overflow questions from World Bank high-income countries 1.00% pandas django 0.75% % of Stack Overflow question views per month numpy matplotlib 0.50% 0.25% flask 0.00%

Limitations

- All Python libraries were designed for in-memory computing
- On their own, they don't work well with bigger-than-RAM datasets
- Apart from embarrasingly parallel problems, we need other solutions

Current mature tool: PySpark

- Python API for Spark, a complete distributed computing framework written in Scala (Java derivative)
- Pros: Rich ecosystem, good integration with Big Data technologies (Hadoop, Hive)
- Cons: Python to/from Java serialization is slow and fragile, difficult to debug

2. Dask

"Dask provides advanced parallelism for analytics, enabling performance at scale for the tools that you love"

- 1. Dynamic task scheduling optimized for interactive computation
- 2. "Big Data" collections like parallel arrays, dataframes, and lists that extend common interfaces like NumPy, Pandas, or Python iterators to larger-than-memory or distributed environments

Dask emphasizes the following virtues:

- Familiar: Provides parallelized NumPy array and Pandas DataFrame objects
- **Flexible**: Provides a task scheduling interface for more custom workloads and integration with other projects
- Native: Enables distributed computing in Pure Python with access to the PyData stack
- Fast: Operates with low overhead, low latency, and minimal serialization necessary for fast numerical algorithms
- Scales up and down: Runs resiliently on clusters with 1000s of cores or a laptop in a single process
- **Responsive**: Designed with interactive computing in mind it provides rapid feedback and diagnostics to aid humans

Out[1]: Client

Cluster

• Scheduler: tcp://127.0.0.1:32941

• Dashboard: http://127.0.0.1:8787/status (http://127.0.0.1:8787/status)

• Workers: 4

• Cores: 4

• Memory: 8.27 GB

```
In [2]: import numpy as np
import dask.array as da

    x = np.arange(1000)
    y = da.from_array(x, chunks=100)

In [3]: y

Out[3]: dask.array<array, shape=(1000,), dtype=int64, chunksize=(100,)>

In [4]: op = y.mean()
    op

Out[4]: dask.array<mean_agg-aggregate, shape=(), dtype=float64, chunksize=()>
```

In [5]: op.visualize()

Out[5]:

In [6]: op.compute()

Out[6]: 499.5

In [8]: df

df.head()

Out[8]:

	VendorID	tpep_pickup_datetime	tpep_dropoff_datetime	passenger_count	trip_distance	pickup_longitude	pickup_latitude	RateCod€
0	2	2015-01-15 19:05:39	2015-01-15 19:23:42	1	1.59	-73.993896	40.750111	1
1	1	2015-01-10 20:33:38	2015-01-10 20:53:28	1	3.30	-74.001648	40.724243	1
2	1	2015-01-10 20:33:38	2015-01-10 20:43:41	1	1.80	-73.963341	40.802788	1
3	1	2015-01-10 20:33:39	2015-01-10 20:35:31	1	0.50	-74.009087	40.713818	1
4	1	2015-01-10 20:33:39	2015-01-10 20:52:58	1	3.00	-73.971176	40.762428	1

In [9]: len(df)

Out[9]: 12748986

3. Application to trajectory prediction

Problem setting

- Complete air traffic data in Spain resampled to 1 second from January to May 2016
- 44264 CSV files, ~98 GiB of data
- In each file, we have time histories of geometric, aerodynamic and atmospheric variables

Objective: "Explore machine learning algorithms to predict the trajectories"

Requirement: Preserve the confidentiality of the data - i.e. don't use cloud resources

Analyzing 100 GiB of data in a 8 GiB RAM laptop? Challenge accepted!

- To preserve the confidentiality of the data, the analysis was done on a laptop:
 - Linux Mint 18.2 64-bit, kernel 4.10.0-35-generic
 - Intel Core™ i5-6200U CPU @ 2.30 GHz x 2 (4 cores)
 - ~8 GiB of RAM
- We focused on a subset of the data (only LEMD → LEBL trajectories)
- To avoid reading all the CSV files every time, we first built an **index of files** in Apache Parquet format
 - This only contained name of the file and pair of cities

Exploratory analysis

- Normalizing with respect to time seems the most natural option
- However, spatial normalization appears to give less dispersion
- A monotonically increasing variable has to be chosen: imperfect solution

LEMD - LEBL Trajectories

Correlations

Many variables are strongly correlated, so they could be discarded for the analysis

Model

- We tried a simple approach based on computing aggregated variables for each flight
- The target variables were the 3D position, time and distance at an specific % of the total duration
- We used RandomForestRegressor and MultiOutputRegressor(RandomForestRegressor) from scikit-learn
- **Pros:** We only need to compute the aggregated variables once per flight
- Cons: Time history information is lost

	١	Predictors (whole flight)	١	Target variables (x %)		
	\	duration_max, T_mean, p_mean,, wkday_Sat	\	$\lambda, arphi$, duration, distance, H_p		
Flight 1	\		\			
Flight 2	\		\			
	\		\			
Flight N	\		\			

Process

- We first computed the aggregated variables
- Both models were trained independently for each time fraction

Variables importance

- Using the Random Forest algorithm, the importance of the variables for the prediction was obtained
- Most important variables were maximum duration and distance, mean temperature and minimum mass
- We kept the categorical variables for the prediction as well

Results

The accuracy was better in the central phase of the flight (R^2 \sim 0.9) and worse in take-off and landing (R^2 \sim 0.7)

4. Future work

- Deeper exploratory analysis and feature engineering
- Scale to a cluster for better performance, more models
- Automate the processing
- Dask-ML for training

5. Final thoughts

- Traditional Python libraries are not ready to scale horizontally
- Dask enables an interactive, familiar workflow easy to scale from a laptop to a cluster
- This simple model could use the result of a clustering to do the prediction
- Interactive visualization and exploration analysis is crucial

Questions?

- https://github.com/Juanlu001)
- hello@juanlu.space(mailto:hello@juanlu.space)

