Python Big Data Analytics with Dask

Juan Luis Cano Rodriguez hello@juanlu.space
(mailto:hello@juanlu.space)

Data-Enhanced Trajectory Based Operations Workshop @ ICRAT,
2018-06-25

LEMD - LEBL Trajectories

Outline

1. Introduction

2. Dask

3. Application to Trajectory Prediction
4. Future work

5. Conclusions

About me

e Aeronautical Engineer specialized in Orbital Mechanics
e Founder and president of the Python Espana non profit, as well as co-organizer
of PyConES .=
m Next edition in Malaga, tickets selling out soon
https://2018.es.pycon.org/ (https://2018.es.pycon.or
e Software Engineer at the geospatial infrastructure team in Satellogic €&
e Freelancer for R&D projects
e Open Source advocate and specially about Python for scientific computing

1. Introduction

Python for Data Science

e Python is adynamic, relatively easy to learn, general purpose language

e There s a vast ecosystem of commercial-friendly, open source libraries around
it

e Growthinthe latest years mainly due to adoption in Data Science

Growth of major programming languages
Based on Stack Overflow question views in World Bank high-income countries

e
Pag) \ . A}
Ay ¢ P ‘ § LR
¢ N ’ ' e) N A .
" . ’ . ' A
. - . \
R Lo LN N . o . ' S . thon
) Y N ’ ~ . N .
.
' . . Y C t
',\ , |\ A \‘ 2) N '~,: ;‘.-'l VaS rl
. .
AR PAREN] “ . " AR R .-t . .
-~ Y . Y ™, . e N - ~o
) ’ - . B ."‘(. “« e Same ' . . ava
. - PR . . .
P A WY . A e

9%

6%

3%

% of overall question views each month

0%

2012 2014 2016 2018

Stack Overflow Traffic to Questions About Selected Python Packages

Based on visits to Stack Overflow questions from World Bank high-income countries

1.00%
pandas
django
= 0.75%
1=
o
=
@
o
w
3
2 numpy
| o
o
17 matplotlib
@ 0.50% P
o
=
=]
b=
[«H]
>
o
>
(&)
S 4
5 7
S
o
32 0.25%
flask

0.00%

PY I ake V@nderpleéﬁ&on 2017 Keynote
many,

SU“PV many
more)

B SymPy . @ scikit-image
4JPYMC3

Limitations

e All Python libraries were designed for in-memory computing
e Ontheir own, they don't work well with bigger-than-RAM datasets
e Apart from embarrasingly parallel problems, we need other solutions

Current mature tool: PySpark

e Python API for Spark, a complete distributed computing framework written in

Scala (Java derivative)
e Pros: Rich ecosystem, good integration with Big Data technologies (Hadoop,

Hive)
e Cons: Python to/from Java serialization is slow and fragile, difficult to debug

@ python™ + Spofll(\z

2. Dask

"Dask provides advanced parallelism for analytics, enabling
performance at scale for the tools that you love"

/7// DASK

1. Dynamic task scheduling optimized for interactive computation

2."Big Data" collections like parallel arrays, dataframes, and lists that extend
common interfaces like NumPy, Pandas, or Python iterators to larger-than-
memory or distributed environments

Dask emphasizes the following virtues:

e Familiar: Provides parallelized NumPy array and Pandas DataFrame objects

e Flexible: Provides a task scheduling interface for more custom workloads and
integration with other projects

e Native: Enables distributed computing in Pure Python with access to the PyData
stack

e Fast: Operates with low overhead, low latency, and minimal serialization
necessary for fast numerical algorithms

e Scales up and down: Runs resiliently on clusters with 1000s of cores or a laptop
in a single process

e Responsive: Designed with interactive computing in mind it provides rapid
feedback and diagnostics to aid humans

Collections Task Graph Schedulers
array 'synchronous
T — . threaded
bag - . [tiprocessing
T mu
dataframe i

distributed

In [1]: from distributed import Client, progress

client = Client()

client
Out[1l]:
Client Cluster
e Scheduler: tcp://127.0.0.1:32941 e Workers: 4
e Dashboard: http://127.0.0.1:8787/status (http://127.0.0.1:8787/status) e Cores: 4

e Memory: 8.27 GB

In [2]:

In [3]:

Out[3]:

In [4]:

Out[4]:

import numpy as np
import dask.array as da

X = np.arange(1000)
y = da.from array(x, chunks=100)
y

dask.array<array, shape=(1000,), dtype=int64, chunksize=(100,)>

op = y.mean()
op

dask.array<mean agg-aggregate, shape=(), dtype=float64, chunksize=()>

In [5]: op.visualize()

Out[5]:

(‘mean_agg-aggregate-#3',)

mean_agg

('mean_combine-partial #2', 0) ('mean_combine-partial #2', 1) ‘ ‘ ('mean_combine-partial #2', 2)

mean_combine mean_combine mean_combine

('mean_chunk-#0', 0) | ‘ (‘'mean_chunk-#0', 1) I ‘ (‘'mean_chunk-#0', 2) I ‘ (‘'mean_chunk-#0', 3) I ‘ (‘'mean_chunk-#0', 4) ‘ ('mean_chunk-#0', 5) ‘ (‘mean_chunk-#0', 6) ‘ ‘ ('mean_chunk-#0', 7) ‘ ‘ ('mean_chunk-#0', 8) | ‘ (‘'mean_chunk-#0', 9)

EEEEIEEEIEISIS

(array#l O) (arr1y4$l 1) ‘ (‘array-#1', 2) ‘ (array«#l' 3) (:m'ay#l 4) (;\rray#l 5) ‘ (‘array-#1', 6) ‘ (arrny«#l’ 7) (army#l’ 8) (an'ay#l' 9)

In [6]: op.compute()

Qut[6]: 499.5

In [7]: import dask.dataframe as dd

df = dd.read csv("data/yellow tripdata *.csv", parse dates=['tpep pickup datetime"',
"tpep dropoff datetime'])

In [8]: df.head()

Out [8] : VendorID tpep_pickup_datetime tpep_dropoff_datetime passenger_count trip_distance pickup_longitude pickup_latitude RateCode
0 2 2015-01-1519:05:39 2015-01-1519:23:42 1 1.59 -73.993896 40.750111 1
11 2015-01-1020:33:38 2015-01-1020:53:28 1 3.30 -74.001648 40.724243 1
2 1 2015-01-1020:33:38 2015-01-1020:43:41 1 1.80 -73.963341 40.802788 1
31 2015-01-1020:33:39 2015-01-1020:35:31 1 0.50 -74.009087 40.713818 1
4 1 2015-01-1020:33:39 2015-01-1020:52:58 1 3.00 -73.971176 40.762428 1

In [9]: T1len(df)

Qut[9]: 12748986

o g I
.

Task Stream

3. Application to trajectory prediction

Problem setting

e Complete air traffic data in Spain resampled to 1 second from January to May
2016

e 44264 CSV files, ~98 GiB of data

e |n each file, we have time histories of geometric, aerodynamic and atmospheric

variables
Objective: "Explore machine learning algorithms to predict the trajectories"

Requirement: Preserve the confidentiality of the data - i.e. don't use cloud resources

Analyzing 100 GiB of datain a 8 GiB RAM laptop? Challenge accepted!

e To preserve the confidentiality of the data, the analysis was done on a laptop:
m Linux Mint 18.2 64-bit, kernel 4.10.0-35-generic
m Intel Core™ i5-6200U CPU @ 2.30 GHz x 2 (4 cores)
m ~8 GiB of RAM
e We focused on a subset of the data (only LEMD *» LEBL trajectories)
e To avoid reading all the CSV files every time, we first built an index of files in
Apache Parquet format
m This only contained name of the file and pair of cities

Exploratory analysis

e Normalizing with respect to time seems the most natural option
e However, spatial normalization appears to give less dispersion
e A monotonically increasing variable has to be chosen: imperfect solution

LEMD - LEBL Trajectories

duration

0.725

0.715 A

S

0.710

0.705 A

0.700

o 20 0 o o 0 o® o ot o (\ O o>
o o \6 1%) PR 0 0 0 0 0 Q 0
® & & ® ®
® ® lambda
duration

Correlations

Many variables are strongly correlated, so they could be discarded for the analysis

DeltaT -
Deltap -

chiTAS -
gammaTAS -

Model

e We tried a simple approach based on computing aggregated variables for each
flight

e The target variables were the 3D position, time and distance at an specific % of
the total duration

e We used RandomForestRegressorand
MultiOutputRegressor(RandomForestRegressor) from scikit-learn

® Pros: We only need to compute the aggregated variables once per flight

e Cons: Time history information is lost

\ Predictors (whole flight) \ Target variables (x %)

\ duration_max, T_mean, p_mean, .., wkday_Sat \ A, ¢, duration, distance, H_p
Flight 1 \ \
Flight2 \ \

\ \
Flight N\ \

Process

e We first computed the aggregated variables
e Both models were trained independently for each time fraction

nlalolotolols
001010000

Variables importance

e Using the Random Forest algorithm, the importance of the variables for the
prediction was obtained

e Most important variables were maximum duration and distance, mean
temperature and minimum mass

e We kept the categorical variables for the prediction as well

Importance of variables

0.6 4

0.5 4

04

0.3 -

0.2 4

0.1 4

00 T T T | — T T T T
o O
«\3 ‘\-\66 ‘(\ea(\ eﬁ(\ e’b“ \\\‘) \a‘J ‘\ eb(\\ &\({7 & \‘6‘2 «\3* ((\3* ((\3* «\\(\
3\\00/ <2 Q,«\o,\\sx,é\\(\o\\s/ 6\\c,\ e B ©-
- ’6 A\
‘\(\ S0 ~

Results

The accuracy was better in the central phase of the flight (R*2 ~ 0.9) and worse in take-
off and landing (R*2 ~ 0.7)

00 02 04 06 08 10 00 02 04 06 08 10

RandomForest MultiOutputRegressor

4. Future work

Deeper exploratory analysis and feature engineering
Scale to a cluster for better performance, more models
Automate the processing

Dask-ML for training

9. Final thoughts

e Traditional Python libraries are not ready to scale horizontally

e Dask enables an interactive, familiar workflow easy to scale from a laptop to a
cluster

e This simple model could use the result of a clustering to do the prediction

e |nteractive visualization and exploration analysis is crucial

Questions?
e https://github.com/Juanlu001 (https://github.com/Juanlu001)

e hello@juanlu.space (mailto:hello@juanlu.space)

