

Trajectory Data Storage

Jose Manuel Cordero

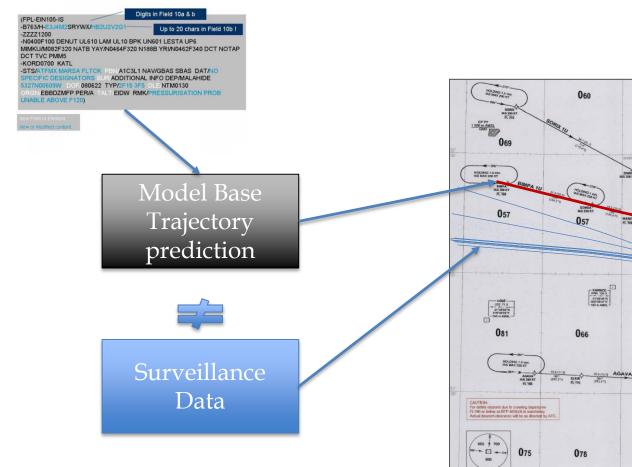
Introduction

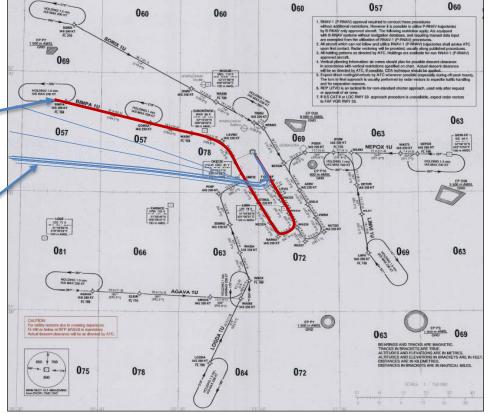
- Data as enabler
- Data in ATM
 - Not too easy to access (propietary, confidential)
 - Many different datasources, not obvious to integrate
 - Different degress of confidence/reliability
 - Not usually massively stored

Introduction

- Some DATACRON/DART strengths:
 - Access to a full dataset of 5+ years available, containing a wide range of different datasources fully stored
 - Experience in the use of such datasets, integration, curation, etc...
 - Operational quality data
- Dataset definition is dependant on the use case (TBO, here)

SCENARIOS


Scenarios considered


- Flight Planning
 - Individual TP
- Flow Management
 - Multiple TP

Flight Planning Scenario

Flight Planning Scenario

(FPL-EIN105-IS

-B753/H-E3J4M/2SRYWX/HB2U2V2G1

Up to 20 chars in Field 10b I

-ZZZZ1200

-N0400F100 DENUT UL610 LAM UL10 BPK UN601 LESTA UP6

MIMKU/M082F320 NATB YAY/N0464F320 N188B YRI/N0462F340 DCT NOTAP

DCT TVC PMM5

-KORDO700 KATL

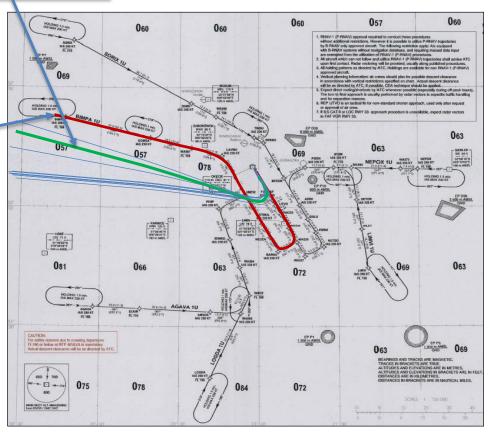
-STS/ATFMX MARSA FLTCK PBN/A1C3L1 NAV/GBAS SBAS DAT/NO

SPECIFIC DESIGNATORS SUR/ADDITIONAL INFO DEPMALAHIDE

5327/N06699W DOF 080622 TYP/ZF15 3F5 DLE NTM0130

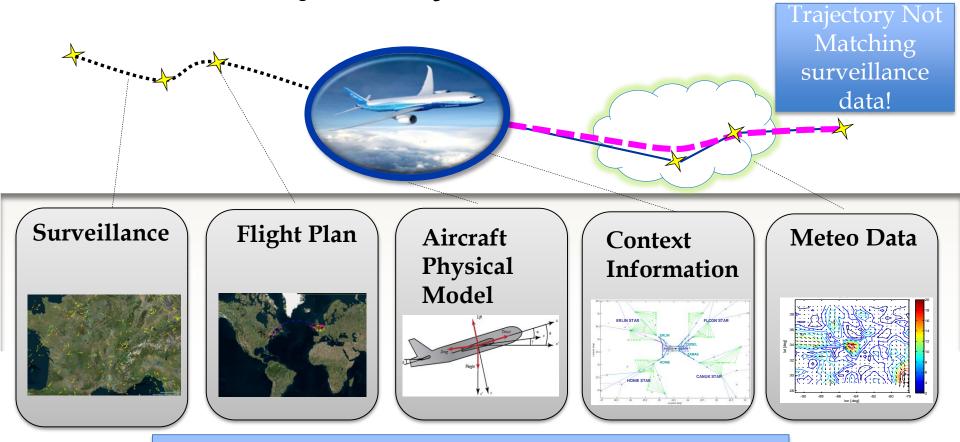
OREN EBBDZMFP PER/A TALT EIDW RMK/PRESSURISATION PROB

UNABLE ABOVE F120)


DatACRON
Trajectory
prediction

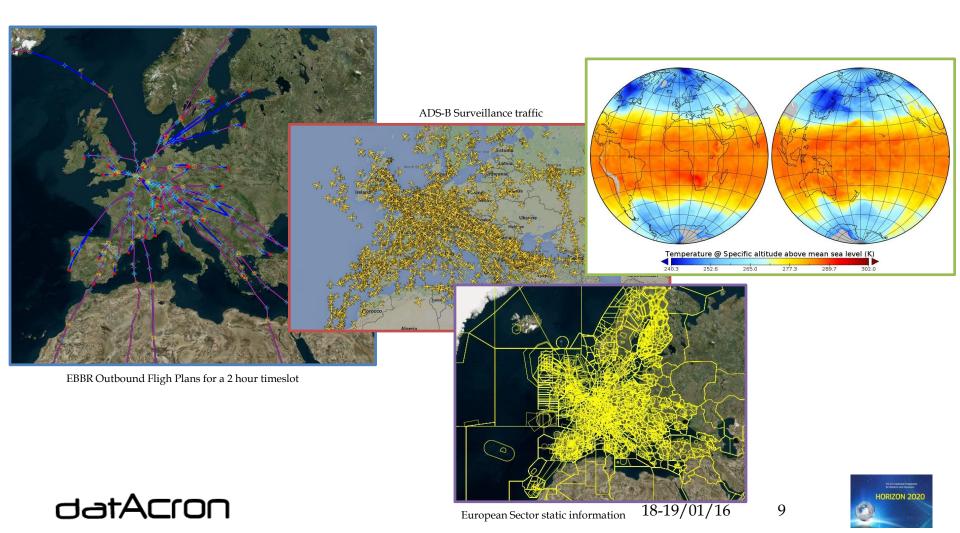
Historical data + context data

Model Base Trajectory prediction


Surveillance Data

Datasets involved in <u>model based</u> Trajectory Prediction

No historical data



Flight Planning Scenario

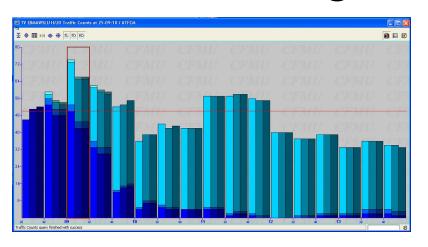
DataSets:

Collection of initial **Flight Plans**Real final trajectories from **Surveillance**

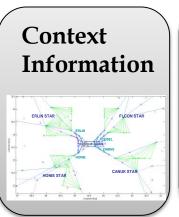
Weather forecasts -and real- and other context data

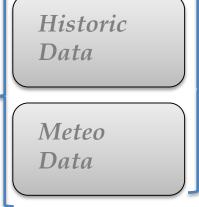
Flow Management Scenario

Demand Capacity Balancing problem



- Traffic forecast are inaccurate, relying on partial information, usually deviated.
 Repetitive events happen and are not used.
- Pattern detection for enhanced Flow Management (objective)
- Consequences:
 - Inefficient Capacity Plan
 - Inefficient Flow Management


Datasets involved in <u>current</u> Flow Management


Demand deviates from expected/planned

DatACRON
Pattern detection

Not fully used

Flow Management Scenario

• Datasets:

- Collection of Flight Plans (current and future)
- Current trajectories (radar tracks)
- Context information: Airspace current configuration + catalog of sectorizations
- Weather forecasts
- Historical data (same format as the above ones, stored in a database)

DATASETS

Overall Sources description: DATACRON

Weather	NOAA	
	IFS	
Surveillance	ADSB	
	DDR	
Airspace	DDR	
Network Management	CFMU (NM)	
Synthetic Trajectories	Synthetic Trajectories	
Aircraft Identification	Aircraft Identification	
Elight Dlan	Network Manager	
Flight Plan	DDR	
Context Information	Network Manager	

ECAC area datasources

Overall Sources description: DART

	NOAA		
Weather	METAR		
	SIGMET		
Surveillance	IFS		
Airomaga	Sector configuration		
Airspace	Link Sectors SC <->GIPV		
Flight Plan	GIPV		
Network Management	CFMU (NM)		


Spain local area datasources (operational data quality)

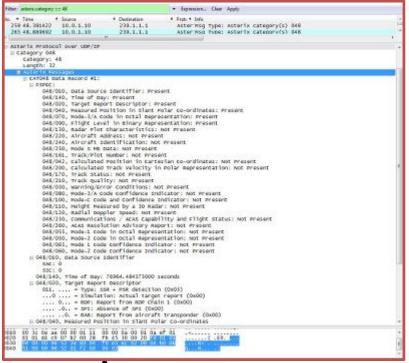
Data Sources - Surveillance

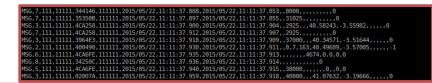
Detection and measurement of aircraft position, range and bearing combined in some cases with additional information as identity and altitude.

Standards and data format

- ASTERIX CATXX
 depending on sensor
 type
- ASDI
- Plain ADS-B (RTCA DO-260)

Sources	Description	Data Structure	Comments
Spanish ATC Radar Data	Radar tracks for all the flights in Spanish airspace	Asterix Cat XX	Historically stored for 7 years
ADSB	Global network of 70 ADS-B stations (53 in Europe)	DO-260 and decoded CSV text	Hundreds of flights 3D position, velocity etc (all ADS-B message fields) each 0.5 seconds





Data Sources - Surveillance

- Update interval is different depending on used sensor or aircraft configuration
- Binary formats, sometimes stored as decoded text
- Individual sensor or combineddata can be analyzed
- ATC systems can provide correlation between Flight Plan and radar data

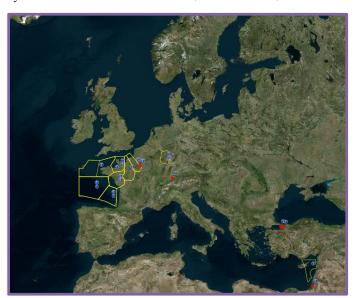
Data looks like...

Hex	Mode	Sqwk	Flight	Alt	Spd	Hdg	Lat	Long	Sig	Msgs	Ti
48ada0	S	3443		37000					4	4	0
4ca6a7	S a	3464	RYR3206	28375	434	106			6	101	1
489787	S a	4544	L0T269	32325					4	207	1
ff4504	Α	4504							10	5	16
48ad03	S ac	4625	L0T333	36000					6	78	0
4b1618	S ac	4514	SWR1353	36000	412	253	51.414	17.454	19	2111	0
49d063	S ac	6276	CSA903	38000	416	246	51.665	17.725	8	1888	0
4ca811	S a	4762	RYR527D	28525	505	091	52.493	18.004	5	543	5
ff4000	Α	4000							14	5	5
ff7004	Α	7004							13	7	45
ff1000	Α	1000							19	7	16
4ca1ff	S ac	3531	RYR456X	10200	314	153	51.301	17.123	40	3706	0
4b9856	S ac	4704	FHY346	35025	542	142	51.893	18.023	7	1985	0
461f35	S ac	4642	FIN768J	39000	389	028	52.166	17.056	5	1960	5
3c4a23	S a	4510	BER266V	21200					4	1895	7

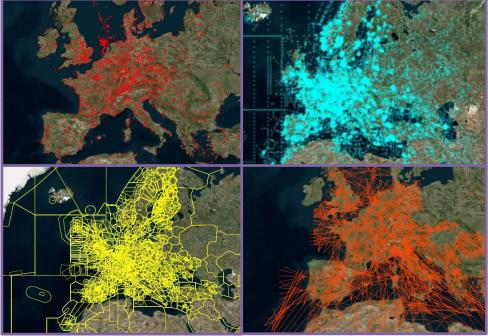
Decoded ADS-B in CSV format

Data sources-Surveillance

- In DART, and also in DATACRON for calibration: IFS, Spanish operational radars (high quality)
- It includes the flight call sign, altitude, speed, position, direction and time. The information is updated every 5 seconds.
- There is overlap in the limits of the IFS regions
- Callsigns are not unique
- Highest quality, but still presents some issues



Data Sources – Airspace (Context)


Its airspace definition and configuration data. Can be divided in static and dynamic data.

Static data includes (Points, Routes, Aerodromes, procedures and Airspaces)

Dynamic data includes NOTAM, sectorization, flow information

Dynamic Data: Regulation

Static Data: Airports, fixpoints and navaids Sectors, routes and procedures

Standards and Data Format

- AIXM
- GML

Sources	Description	Data Structure	Comments
Spanish ATC Sector Configurations and adaptation Data	Spanish airspace georeferenced data	File and DB. Propietary format.	Historically stored for 7 years
EUROCONTROL Network Manager Airspace Information	Static information	AIXM	Baselines and amendments can be published
EUROCONTROL Network Manager Flow Information	Regulations, hotspots, traffic counts, NOTAM	XML with references to Airspace Information	

Data Sources - Airspace (Context)

- Usually static data is loaded into relational databases
- Dynamic reports reference static aerospace data
- Static data is used to decode fligh plan information

Static data is dynamic too... every AIRAC cycle

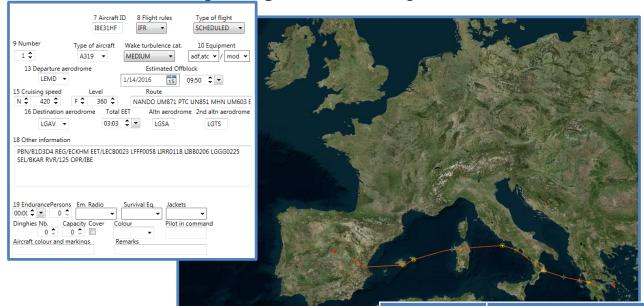
Data looks like...

```
kflow:TrafficCountsByAircraffOperatorReply xmlns:flight="eurocontrol/cfmu/b2b/FlightServices" xmlns:common="eurocontrol/cfmu/b2b/CommonServices" xmlns:airspace="eurocontrol/cfmu/b2b/AirspaceServices" xmlns:flow="eurocontrol/cfmu/b2b/FlowServices">
     <requestReceptionTime>2015-02-20 18:47:47</requestReceptionTime>
     <requestId>123456</requestId>
     <sendTime>2015-02-20 18:47:47</sendTime>
    <status>0K</status>
     <data>
         <effectiveTrafficWindow>
              <wef>2014-04-02 12:00</wef>
              <unt>2014-04-03 00:00</unt>
          </effectiveTrafficWindow>
              <item:
                       <wef>2014-04-02 12:00</wef>
                       <unt>2014-04-02 12:05</unt>
                            <key>DEMAND</key>
                                <totalCounts>100</totalCounts>
                                 <subTotalsCounts>
                                         <kev>ATC ACTIVATED</kev>
                                          <value>10</value>
                                         <key>PFD</key>
                                          <value>0</value>
                                          <key>SUSPENDED</key>
                                          <value>30</value>
                                         <key>TACT ACTIVATED WITHOUT FSA</key>
                                         <value>0</value>
                                     </item>
                                                                                                                                                            Regulations
                                         <key>IFPL</key>
```

```
<generalinformation:AIMRetrievalReply>
 <requestReceptionTime>2016-01-13 08:40:16</requestReceptionTime>
 <requestId>B2B CUR:2015696</requestId>
 <sendTime>2016-01-13 08:40:16</sendTime>
 <status>OK</status>
-<data>
 -<aim>
   -<summarv>
      <id>00001585</id>
     -<validityPeriod>
        <wef>2016-01-13</wef>
        <unt>2016-01-13</unt>
      </validityPeriod>
      <releaseTime>2016-01-13 01:25</releaseTime>
      <description>TAXI TIME EHAM</description>
     </summary>
      TAXI TIME EHAM Valid from: 2016-01-13 Valid until: 2016-01-13 Released: 2016-01-13 01:25:26
      TACT/CASA INFORMATION MESSAGE . 1 REF : TAXI TIME EHAM . 2 VALID : WEF 13-01:20
      UNTIL 13-05:12 UTC TAXI TIME 18 MIN . 3 REMARK: CTOT FOR FLIGHTS DEPARTING IN THE
      ABOVE PERIOD WILL BE CALCULATED ACCORDING TO THE NEW TAXI TIME AND SLOT
      REVISION MESSAGES MAY BE ISSUED. . 4 THE INDIVIDUAL TAXI-TIMES PER FLIGHT THAT
      ARE PROVIDED BY AIRPORTS SUCH AS CDM AIRPORTS KEEP PRIORITY OVER DEFAULT OR
      UPDATED GLOBAL TAXI-TIMES AS SPECIFIED ABOVE. . NETWORK OPERATIONS - BRUSSELS
     </message>
   </aim>
 </data>
</generalinformation:AIMRetrievalReply>
                                                                       Taxi times report
```


Data sources-Airspace (Context)

In DART, Spanish operational Datasource: ISE


- Addressing both airspace design and Schedule of sector configurations deployed
- Sector configuration:
 - 1. Table of volumes, sectors and configurations (catalog)
 - 2. Schedule of actual configurations in place per day
- Spanish operational information (ISE), presents some roblems in the transitions
- Link Sectors SC <-> GIPV:
 - "synthetic" datasource, produced in-house to facilitate the link between flight plan info and sector configurations
 - Due to particularities of Spanish ATC system, the operational sectors are not used, but volumes (SACTA sector)
 - This allows data users to know for each flight plan point related to a sector-volume SACTA the corresponding official sector

Data Sources - Flight Plan

Specified information provided to air traffic services units, relative to an intended flight or portion of a flight of an aircraft.

Standards and Data Format

- ICAO 4444 + amendments
- NM 19.0.0 NOP/B2B Reference Manuals - FlightServices

- FIXM

STATE STATE OF	Sources	Description	Data Structure	Comments
No. of Contract of	Spanish ATC Platform Flight Plan Data	Relevant flight messages for all the flights in Spanish airspace (Flight plan creation, deletion and major updates, sector entry, sector leave,)	ICAO 4444 + Amendments (FPL 2012)	For all the Spanish airspace, 1 Gb/day. Historically stored for 7 years. Streaming can be emulated
	Network Manager Flight Information	Flight history for inbound and outbound flights in European Airspace	NM 19.0.0 - NOP/B2B Reference Manuals - FlightServices	

Data Sources – Flight Plan

- FP envolves in time
- Text easy to parse
- Normally not directly georeferenced, but links to Airspace information that is

Data looks like...

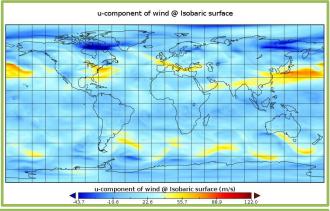
```
#flight:FlightRetrievalReply xmlns:flight="eurocontrol/cfmu/b2b/FlightServices" xmlns:common="eurocontrol/cfmu/b2b/CommonServices" xmlns:airspace="eurocontrol/cfmu/b2b/AirspaceServices"
  ns:flow="eurocontrol/cfmu/b2b/FlowServices">
   <requestReceptionTime>2015-02-20 18:47:48</requestReceptionTime>
   <requestId>123456</requestId>
   <sendTime>2015-02-20 18:47:48</sendTime>
   <status>0K</status>
      <flightPlan>
          <aerodromeOfDeparture>
             <icaoId>EBBR</icaoId>
          </aerodromeOfDeparture>
          <aerodromesOfDestination>
             <aerodromeOfDestination>
                <icaoId>| BSF</icaoId>
             </aerodromeOfDestination>
             <alternatel>
                <icaoId>LBPD</icaoId>
             </alternate1>
             <alternate2>
                <icaoId>LBBG</icaoId>
             </alternate2>
          </aerodromesOfDestination>
         <aircraftId>
             <aircraftId>LZB406</aircraftId>
         </aircraftId>
                                                                                                                (FPL-AAL69-IS
         <numberOfAircraft>l</numberOfAircraft>
         <aircraftType>
             <icaoId>A319</icaoId>
                                                                                                                -B772/H-SDE1E3FGHIJ4J5M1RWXYZ/D1L
          </aircraftType>
         <totalEstimatedElapsedTime>0225</totalEstimatedElapsedTime>
                                                                                                                -LEMD1120
          <wakeTurbulenceCategory>MEDIUM</wakeTurbulenceCategory>
         <flightType>SCHEDULED</flightType>
                                                                                                                -N0487F290 ZMR UL155 ADORO DCT EPOPO DCT ARMED/M084F300 DCT
         <flightRules>IFR</flightRules>
         <estimatedOffBlockTime>2010-04-29 07:50</estimatedOffBlockTime>
         <icaoRoute>N0455F390 S0POK UY863 ETEN0 Y863 RUDUS UL984 ESATI UL603 OBEDI UN739 NISVA</icaoRoute>
                                                                                                                43N020W 43N030W 42N040W 41N050W DCT SOORY/N0485F360 M204 SUMRS
         <equipmentCapabilityAndStatus>
             <dme>EOUIPPED</dme>
                                                                                                                A699 PERMT DCT OSOGY HILEY6
             <hfRtf>EQUIPPED</hfRtf>
             <inertialNavigation>EQUIPPED</inertialNavigation>

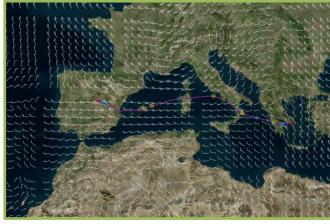
    -KMIA0949 KPBI

             <standard>EQUIPPED</standard>
             <rvsm>EQUIPPED</rvsm>
                                                                                                                -PBN/A1B1C1D1L1O1S2T1 NAV/RNVD1E2A1 DOF/160114 REG/N783AN
             <khz833>EQUIPPED</khz833>
         </equipmentCapabilityAndStatus>
         <surveillanceEquipment>
                                                                                                                 EET/LPPC0028 LPPC0119 020W0158 030W0255 KZWY0351 050W0451
             <modeS>NOT EQUIPPED</modeS>
         </surveillanceEquipment>
                                                                                                                SOORY0608 LUNKR0706 BEXUM0743 KZMA0856 SEL/JLRS
         <otherInformation>
             <nameOfOperator>LZB</nameOfOperator>
                                                                                                                RMK/NRP)
             <otherRemarks>REG/LZFBA</otherRemarks>
          </otherInformation>
      </flightPlan>
                                                                                                                                                                          ICAO 4444 FPL 2012 Flight Plan
```


flight:FlightRetrievalReply>

Data Sources-Flight Plan


- What if you need all the changes in Flight Plan, not just initial and final?
- Single data source (GIPV, Flight Plan Information Management System) used, a subsystem of the Spanish ATC platform.
- Contains information on every flight plan currently in flight or scheduled to fly. All the changes and cancellations that affect flight plans are constantly updated and registered in the system.
- Contains all intermediate Flight Plans per flight, allowing snapshots
- Covers all flight plans which are flying or going to fly in the near future (to 15 hours) in the responsibility airspace

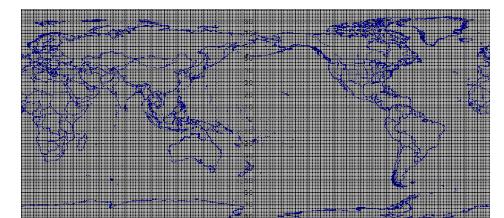


Data Sources: Weather

Involving predictions and observations

Standards and Data Format

- GRIB / GRIB-2
- netCDF
- TAF
- METAR


Sources	Description	Data Structure	Comments
ECMWF	Re-analyses from 1979 to date. Useful for climatological purposes	Original data: 6-hourly Analyses from 1979 to date. 0.72 degree horizontal resolution, over Surface and 37 vertical pressure levels. Climatological data: means, medians and standard deviations for all relevant variables at surface	Limited by ECMWF data Policy The Statistical variable might be daily, monthly or number of occurrences per month or depending upon the variable type. On demand other statistical indicators can be calculated.
ECMWF	of the same model run	15 days forecasts with 3 hourly time step of 51 aparallel forecasts (ensemble members). 0.25 degrees horizontal resolution, several vertical pressure levels . Two drops a day (00,12Z) Up to 10 days forecast time range and 3 hourly /hourly time step. 0.125 degrees horizontal resolution, several vertical levels both pressure and hybrid. Two drops a day (00,12Z)	Derived quantities like Ensemble means, STD, probabilities can be made available over the period and area requested. Need to decide which variable and which level make available.
NCEP	of the same model run	15 days forecasts with 3 hourly time step of 20 parallel forecasts (ensemble members). 0.50 degrees horizontal resolution, several vertical pressure levels . Four drops a day (00,06,12,18Z) Up to 10 days forecast time range and 3 hourly /hourly time step. 0.25 degrees horizontal resolution, several vertical levels both pressure and hybrid. Four drops a day (00,06,12,18Z)	Derived quantities like Ensemble means, STD, probabilities can be made available over the period and area requested. Need to decide which variable and which level make available.
Boeing	High Resolution Regional Model	Up to 72 hours forecast time range with hourly time steps. 0.1 degrees horizontal resolution, several vertical levels both pressure and hybrid. Nested on: ECMWF Global model (two drops a day 00Z and 12Z) NCEP Global Model (4 drops a day - 00, 06,12, 18Z)	
Several Public Insitution	TAF: official forecasts for airposts METAR: officially weather variables measured at airports	TAFs are valid for a 30 hour time period and are issued 4 times a day at 6 hour intervals. The forecast includes forecasted wind speed, wind direction, visibility, ceiling, type of precipitation (i.e. snow, rain, etc.) and/or weather phenomenon. METAR are issued hourly and also whenever there is specific phenomena to be highlighted.	A few years of data are already available

Data sources-Weather

- Three weather datasources considered: NOAA, METAR, SIGMET
- **NOAA** (*National Oceanic and Atmospheric Administration*): Weather predictions at world level, every 6 hours with information 7 days in advance. Used mainly to obtain the weather conditions at the position an aircraft is at any given time of the flight.
- Most relevant variables: Temperature, Pressure, the two horizontal components of the Wind Speed, since they affect the performance of the aircraft.
- NCEP Grid 4 which has a resolution of 0.5°

Data sources-Weather

- METAR: Airports' weather information (Spanish airports).
- METARs typically come from airports or permanent weather observation stations. Reports are generated once an hour or halfhour, but if conditions change significantly, a report known as a special (SPECI) may be issued.
- Raw METAR is the most common format in the world for the transmission of observational weather data (ICAO standardized)

Data sources -Weather

- **SIGMET**: Information of actual or anticipated adverse weather conditions/phenomena (en-route or at the airports approach, in Spain).
- SIGMET data are weather advisory that contains meteorological information concerning the safety of all aircrafts. This information is usually broadcast on the ATIS at ATC facilities.
- SIGMETs are issued as needed, and are valid up to four hours. SIGMETS for hurricanes and volcanic ash are valid up to six hours.

Data Sources - Weather

-43.4

-40.6

-39 3

-37.9

-36.6

-35.4

-34.2

-33.1

-32.0

-30.9

-29.8

-28.7

-27.7

-26.7

-25.7

-24.7

-23.8

-22.9

-22.0

-21.0

-20.1

-19.1

-18.2

-17.2

Pressure tropopause

Relative humidity isobaric

Relative humidity_sigma_layer

Relative_humidity_zeroDegC_isotherm

Relative humidity sigma

Relative humidity entire atmosphere single layer

Relative humidity_highest_tropospheric_freezing

Relative_humidity_height_above_ground

Relative_humidity_pressure_difference_layer

Soil temperature depth below surface laver

Specific_humidity_height_above_ground

reftime

sigma_layer

sigma layer bounds

Snow depth surface

TAF and METAR are formatted text. The rest of formats are binary

Most relevant in model based trajectory prediction are winds and temperatura that are the ones the pilot inputs

in the Flight Management Computer.

88.250

88.000

87.750

87,250

87.000

86.750 86,500

86.250

85,750

85.500

85.250

84.500

84,250

84,000

83.750

-34.2

-33.0

-31.9

-30.9

-29.8

-28.7

-27.7

-26.7

-25.7

-24.7

-23.8

-22.9

-22.0

-21.0

-20.1

-19.1

-18.2

-17.2

-34.2

-33.0

-31.9

-30.9

-29.8

-28.7

-27.7

-26.7

-25.7

-24.7

-23.8

-22.9

-22.0

-21.0

-20.1

-19.1

-18.2

-17.2

-34.2

-33.1

-31.9

-30.9

-29.8

-28.7

-27.7

-26.7

-25.7

-24.7

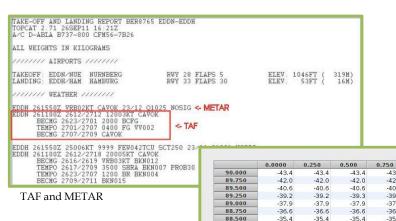
-23.8

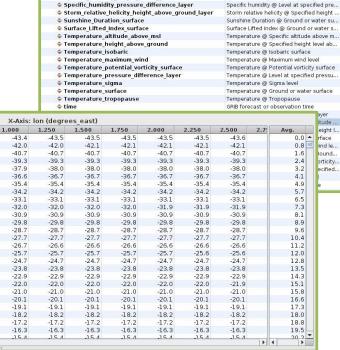
-22.9

-22.0

-21.0

-20.1


-19.1


-18.2

-17.2

-16.3

Pressure @ Tropopause

Relative humidity @ Entire atmosphere la...

Relative humidity @ Specified height level..

Relative humidity @ Highest tropospheric...

Relative humidity @ Level at specified pre.

Relative humidity @ Level of 0°C isotherm

Snow depth @ Ground or water surface

Soil temperature @ Depth below land sur.,

Specific humidity @ Specified height level...

Relative humidity @ Isobaric surface

Relative humidity @ Sigma level laver

Relative humidity @ Sigma level

GRIB reference time

Sigma level

Sigma level

bounds for sigma layer

Available datasets in a GRIB-2 binary file

Geo2D

Geo2D

Geo2D

Geo2D

Geo2D

Geo2D

Geo2D

Geo2D

1D

20

Geo2D

Data sources-Network

- CFMU, coming from the Network Management, thus covering European airspace. CFMU is the former name of the current Network Manager
- Addresses the regulations put in place to ensure a proper Demand Capacity balance in a tactical way.
- The source is one table for flights. When a flight has a regulation, the code of the regulation applied is provided on the row.

Other data sources

- Synthetic data: Trajectories generated by TP
- Aircraft identifier: Details of the aircraft in known trajectory.
 - In ADSB sources the aircraft is identified by ICAO 24-bit address or (informally) Mode-S "hex code".
 - Model of the aircraft, or more specifically, the ICAO Type Designator, according to DOC 8643.

Datasets: An example

AirspaceStructures-SC	354.6 MB
FlightPlans-GIPV	52.81 GB
NetworkManagement-CFMU	908 MB
RadarTracks-IFS	95 GB
SC_vs_FP	1 MB
Weather-METAR	106 MB
Weather-NOAA	13 TB
Weather-SIGMET	15 MB
TOTAL	14 TB

DART: 2 years of operational data in Spain

- 2 years of operational data
- 4 Millions of Flights (4106320 flights)
- 2.5 Billions of Radar points (2714042496 points)
- 1 Billion of Flight Plan Route points (1003734563 points)
- 89 Millions of Flight Plan messages (89903772 messages)

Conclussions

- The vast datasets available have allowed to develop DATACRON & DART results
- Heterogeneity of data
- It has also presented challenges in terms of integration and management (next presentation)

